1 |
INVESTIGATION OF FACTORS AFFECTING COLLISION CVD ESTIMATION AND THE IMPACT OF DECOMPOSITION ERRORS ON THE EMG SIGNAL COHERENCEMajeti, Srivatsa Subba Rao 20 July 2010 (has links)
Experimental measurements are never perfect, even with sophisticated modern instruments. One of the fundamental problems in signal measurement is distinguishing the noise from the signal. Sometimes the two can be partly distinguished on the basis of frequency components: for example, the signal may contain mostly low-frequency components and the noise may be located at higher frequencies. This is the basis of filtering.
This thesis discusses some changes in the experimental protocol such as determining a suitable stimulation site to elicit full compound nerve action potentials (CNAP). The effect of sampling frequency and smoothing techniques to improve the resolution of the conduction velocity distribution (CVD) estimates will also be discussed. A change in stimulation site to elicit the full CNAPs is proposed after realizing that it is relatively difficult to stimulate at the same location to recruit the nerve fibers repeatedly at the elbow. Thus, the stimulation site was changed from elbow to wrist to elicit the full CNAPs. From the simulations it is evident that there was some signal information beyond 2.5 kHz frequency resulting in an increase in the sampling rate from 5 kHz to 10 kHz. The results obtained after employing smoothing techniques improved the CVD resolution. The simulation results were corroborated with the experimental results obtained.
Another aspect of this thesis is to check the error tolerance of the EMG decomposition algorithm. Once the muscle electrical activity is recorded, MU trains undergo an automatic decomposition process. Decomposition errors are present in most contractions, thus a human operator has to make changes/correct the values of the motor unit firing times.
From the data acquired, false negatives, false positives and false negative-positive errors have been introduced. Different levels of errors to measure the coherence between two motor-unit firing trains from a muscle contraction were also introduced. The firing rate curves are computed for each MU to analyze the interactions between two motor units (MU). The false negatives type of errors was found to be least detrimental. Whereas the false positives and false negative-positive errors affected coherence the most, their error tolerance was only a single error per 5 seconds.
|
2 |
Perturbation Based Decomposition of sEMG SignalsHuettinger, Rachel 01 March 2019 (has links)
Surface electromyography records the motor unit action potential signals in the vicinity of the electrode to reveal information on muscle activation. Decomposition of sEMG signals for characterization of constituent motor unit action potentials in terms of amplitude and firing times is useful for clinical research as well as diagnosis of neurological disorders. Successful decomposition of sEMG signals would allow for pertinent motor unit action potential information to be acquired without discomfort to the subject or the need for a well-trained operator (compared with intramuscular EMG). To determine amplitudes and firing times for motor unit action potentials in an sEMG recording, Szlavik's perturbation based decomposition may be applied. The decomposition was initially applied to synthetic sEMG signals and then to experimental data collected from the biceps brachii. Szlavik's decomposition estimator yields satisfactory results for synthetic and experimental sEMG signals with reasonable complexity.
|
3 |
Automated Measurement of Neuromuscular Jitter Based on EMG Signal DecompositionHe, Kun January 2007 (has links)
The quantitative analysis of decomposed electromyographic (EMG) signals reveals information for diagnosing and characterizing neuromuscular disorders. Neuromuscular jitter is an important measure that reflects the stability of the operation of a neuromuscular junction. It is conventionally measured using single fiber electromyographic (SFEMG) techniques. SFEMG techniques require substantial physician dexterity and subject cooperation. Furthermore, SFEMG needles are expensive, and their re-use increases the risk of possible transmission of infectious agents. Using disposable concentric needle (CN) electrodes and automating the measurment of neuromuscular jitter would greatly facilitate the study of neuromuscular disorders. An improved automated jitter measurment system based on the decomposition of CN detected EMG signals is developed and evaluated in this thesis.
Neuromuscular jitter is defined as the variability of time intervals between two muscle fiber potentials (MFPs). Given the candidate motor unit potentials (MUPs) of a decomposed EMG signal, which is represented by a motor unit potential train (MUPT), the automated jitter measurement system designed in this thesis can be summarized as a three-step procedure: 1) identify isolated motor unit potentials in a MUPT, 2) detect the significant MFPs of each isolated MUP, 3) track significant MFPs generated by the same muscle fiber across all isolated MUPs, select typical MFP pairs, and calculate jitter. In Step one, a minimal spanning tree-based 2-phase clustering algorithm was developed for identifying isolated MUPs in a train. For the second step, a pattern recognition system was designed to classify detected MFP peaks. At last, the neuromuscular jitter is calculated based on the tracked and selected MFP pairs in the third step. These three steps were simulated and evaluated using synthetic EMG signals independently, and the whole system is preliminary implemented and evaluated using a small simulated data base.
Compared to previous work in this area, the algorithms in this thesis showed better performance and great robustness across a variety of EMG signals, so that they can be applied widely to similar scenarios. The whole system developed in this thesis can be implemented in a large EMG signal decomposition system and validated using real data.
|
4 |
Automated Measurement of Neuromuscular Jitter Based on EMG Signal DecompositionHe, Kun January 2007 (has links)
The quantitative analysis of decomposed electromyographic (EMG) signals reveals information for diagnosing and characterizing neuromuscular disorders. Neuromuscular jitter is an important measure that reflects the stability of the operation of a neuromuscular junction. It is conventionally measured using single fiber electromyographic (SFEMG) techniques. SFEMG techniques require substantial physician dexterity and subject cooperation. Furthermore, SFEMG needles are expensive, and their re-use increases the risk of possible transmission of infectious agents. Using disposable concentric needle (CN) electrodes and automating the measurment of neuromuscular jitter would greatly facilitate the study of neuromuscular disorders. An improved automated jitter measurment system based on the decomposition of CN detected EMG signals is developed and evaluated in this thesis.
Neuromuscular jitter is defined as the variability of time intervals between two muscle fiber potentials (MFPs). Given the candidate motor unit potentials (MUPs) of a decomposed EMG signal, which is represented by a motor unit potential train (MUPT), the automated jitter measurement system designed in this thesis can be summarized as a three-step procedure: 1) identify isolated motor unit potentials in a MUPT, 2) detect the significant MFPs of each isolated MUP, 3) track significant MFPs generated by the same muscle fiber across all isolated MUPs, select typical MFP pairs, and calculate jitter. In Step one, a minimal spanning tree-based 2-phase clustering algorithm was developed for identifying isolated MUPs in a train. For the second step, a pattern recognition system was designed to classify detected MFP peaks. At last, the neuromuscular jitter is calculated based on the tracked and selected MFP pairs in the third step. These three steps were simulated and evaluated using synthetic EMG signals independently, and the whole system is preliminary implemented and evaluated using a small simulated data base.
Compared to previous work in this area, the algorithms in this thesis showed better performance and great robustness across a variety of EMG signals, so that they can be applied widely to similar scenarios. The whole system developed in this thesis can be implemented in a large EMG signal decomposition system and validated using real data.
|
5 |
Decoding motor neuron behavior for advanced control of upper limb prosthesesKapelner, Tamás 01 December 2016 (has links)
No description available.
|
6 |
Decomposição de sinais mioelétricos superficiais: avaliação não-invasiva de desordens neuromusculares / Surface mioeletric signals decomposition: non-invasive evaluation of neuromuscular disordersSamuel Waldemar Andrade Flôr 18 August 2003 (has links)
Informações sobre as características funcionais e estruturais da unidade motora (UM) são altamente relevantes em investigações fisiológicas e nos estudos clínicos das disfunções neuromusculares. A eletromiografia (EMG) é um método adequado para obtenção dessas informações. Entretanto, devido à dificuldade na separação da atividade individual de uma unidade motora das outras que estão simultaneamente ativas, seu uso em clínica prática se dá comumente através de métodos invasivos, empregando eletrodos de agulha ou fios implantados. Apesar da EMG de superfície ser não-invasiva e, portanto mais apropriada para aplicações clínicas, não é usada em clínica porque não há até o presente um método satisfatório para decomposição do sinal EMG de superfície. Um EMG de superfície é muito mais difícil de decompor devido a significante superposição dos Potenciais de Ação das UMs (MUAPs) e a relação sinal-ruído relativamente baixa, se comparada aos métodos invasivos. Defendemos que a separação da atividade individual das UMs pode ser feita de modo não-invasivo aliando-se técnicas de aquisição altamente especializadas com técnicas usadas em reconhecimento de padrões. Desenvolvemos um método para decomposição de EMGs de superfície, a partir do qual foi possível extrair características relevantes das UMs, que permitem seu uso em avaliação e diagnóstico de desordens neuromusculares. Em nossa abordagem, o sinal EMG é inicialmente captado sob contração isométrica fraca usando eletrodos desuperfície. O sinal EMG bruto passa em seguida por um filtro Diferencial Passa-Baixas Ponderado (DPBP) em série com um detector de picos, que detecta os picos de MUAPs e extrai suas formas de onda. Na sequência, o conjunto de MUAPs extraído é classificado por uma rede neural SOM, e os MUAPs agrupados pela similaridade de suas formas de onda. No próximo passo a informação temporal dos disparos é checada, eliminando possíveis erros de classificação, e finalmente os Trens de MUAPs (MUAPTs) das UMs individuais são reconstituídos do EMG original. As estatísticas de disparos (IPI) bem como as formas de ondas dos MUAPs das respectivas UMs são então extraídas e armazenadas para estudos posteriores. Resultados preliminares obtidos com EMGs normais e patológicos, extraídos de membros superiores sob contração fraca, indicam que, o método mostrou-se apto a decompor EMGs de superfícies, além de potencial para aplicações em estudos clínicos não-invasivos de disfunções neuromusculares.Informações sobre as características funcionais e estruturais da unidade motora (UM) são altamente relevantes em investigações fisiológicas e nos estudos clínicos das disfunções neuromusculares. A eletromiografia (EMG) é um método adequado para obtenção dessas informações. Entretanto, devido à dificuldade na separação da atividade individual de uma unidade motora das outras que estão simultaneamente ativas, seu uso em clínica prática se dá comumente através de métodos invasivos, empregando eletrodos de agulha ou fios implantados. Apesar da EMG de superfície ser não-invasiva e, portanto mais apropriada para aplicações clínicas, não é usada em clínica porque não há até o presente um método satisfatório para decomposição do sinal EMG de superfície. Um EMG de superfície é muito mais difícil de decompor devido a significante superposição dos Potenciais de Ação das UMs (MUAPs) e a relação sinal-ruído relativamente baixa, se comparada aos métodos invasivos. Defendemos que a separação da atividade individual das UMs pode ser feita de modo não-invasivo aliando-se técnicas de aquisição altamente especializadas com técnicas usadas em reconhecimento de padrões. Desenvolvemos um método para decomposição de EMGs de superfície, a partir do qual foi possível extrair características relevantes das UMs, que permitem seu uso em avaliação e diagnóstico de desordens neuromusculares. Em nossa abordagem, o sinal EMG é inicialmente captado sob contração isométrica fraca usando eletrodos desuperfície. O sinal EMG bruto passa em seguida por um filtro Diferencial Passa-Baixas Ponderado (DPBP) em série com um detector de picos, que detecta os picos de MUAPs e extrai suas formas de onda. Na sequência, o conjunto de MUAPs extraído é classificado por uma rede neural SOM, e os MUAPs agrupados pela similaridade de suas formas de onda. No próximo passo a informação temporal dos disparos é checada, eliminando possíveis erros de classificação, e finalmente os Trens de MUAPs (MUAPTs) das UMs individuais são reconstituídos do EMG original. As estatísticas de disparos (IPI) bem como as formas de ondas dos MUAPs das respectivas UMs são então extraídas e armazenadas para estudos posteriores. Resultados preliminares obtidos com EMGs normais e patológicos, extraídos de membros superiores sob contração fraca, indicam que, o método mostrou-se apto a decompor EMGs de superfícies, além de potencial para aplicações em estudos clínicos não-invasivos de disfunções neuromusculares. / Information on the functional and structural characteristics of the motor unit (MU) they are highly important in physiologic investigations and in the clinical studies of the neuromuscular dysfunctions. The electromyography (EMG) it is an appropriate method for obtaining of that information. However, due to the difficulty in the separation of the individual activity of a motor unit of the another that are simultaneously active, your use in practical clinic happen commonly through methods invasive, employing needle electrodes or implanted threads. In spite of surface EMG to be non-invasive and, therefore more appropriate for clinical applications, it is not used at clinic because there is not until the present a satisfactory method for decomposition of the surface EMG sign. A surface EMG is much more difficult of decomposing due to significant overlap of the Motor Unit Action Potentials (MUAPs) and the relationship sign-noise relatively low, if compared to the invasive methods. We defended that the separation of the individual activity of MUs can be made in way non-invasive allying highly specialized acquisition techniques with techniques used in recognition of patterns. We developed a method for decomposition of surface EMGs, starting from which was possible to extract important characteristics of MUs, which allow your use in evaluation and diagnosis of neuromuscular disorders. In our approach, the sign EMG is captured initially under weak isometriccontraction using surface electrodes. The sign EMG raw raisin soon after for a Biased Low-Pass Differential filter (BLPD) in series with a detector of peaks, that detects the peaks of MUAPs and it extracts your wave forms. In the sequence, a SOM neural network classifies the set of extracted MUAPs, and MUAPs are clustered by the similarity in your wave shape. In the next step the temporal information of the discharges is checked, eliminating possible classification mistakes, and finally the MUAPs Trains (MUAPTs) of individual MUs they are reconstituted of original EMG. The statistics of discharges (IPI) as well as the forms of waves of MUAPs of respective MUs are then extracted and stored for subsequent studies. Results preliminaries obtained with normal and pathological EMGs, extracted of superior members under weak contraction, they indicate that, the method was shown capable to decompose surfaces EMGs, besides potential for applications in clinical studies non-invasive of neuromuscular dysfunctions.
|
7 |
Decomposição de sinais mioelétricos superficiais: avaliação não-invasiva de desordens neuromusculares / Surface mioeletric signals decomposition: non-invasive evaluation of neuromuscular disordersFlôr, Samuel Waldemar Andrade 18 August 2003 (has links)
Informações sobre as características funcionais e estruturais da unidade motora (UM) são altamente relevantes em investigações fisiológicas e nos estudos clínicos das disfunções neuromusculares. A eletromiografia (EMG) é um método adequado para obtenção dessas informações. Entretanto, devido à dificuldade na separação da atividade individual de uma unidade motora das outras que estão simultaneamente ativas, seu uso em clínica prática se dá comumente através de métodos invasivos, empregando eletrodos de agulha ou fios implantados. Apesar da EMG de superfície ser não-invasiva e, portanto mais apropriada para aplicações clínicas, não é usada em clínica porque não há até o presente um método satisfatório para decomposição do sinal EMG de superfície. Um EMG de superfície é muito mais difícil de decompor devido a significante superposição dos Potenciais de Ação das UMs (MUAPs) e a relação sinal-ruído relativamente baixa, se comparada aos métodos invasivos. Defendemos que a separação da atividade individual das UMs pode ser feita de modo não-invasivo aliando-se técnicas de aquisição altamente especializadas com técnicas usadas em reconhecimento de padrões. Desenvolvemos um método para decomposição de EMGs de superfície, a partir do qual foi possível extrair características relevantes das UMs, que permitem seu uso em avaliação e diagnóstico de desordens neuromusculares. Em nossa abordagem, o sinal EMG é inicialmente captado sob contração isométrica fraca usando eletrodos desuperfície. O sinal EMG bruto passa em seguida por um filtro Diferencial Passa-Baixas Ponderado (DPBP) em série com um detector de picos, que detecta os picos de MUAPs e extrai suas formas de onda. Na sequência, o conjunto de MUAPs extraído é classificado por uma rede neural SOM, e os MUAPs agrupados pela similaridade de suas formas de onda. No próximo passo a informação temporal dos disparos é checada, eliminando possíveis erros de classificação, e finalmente os Trens de MUAPs (MUAPTs) das UMs individuais são reconstituídos do EMG original. As estatísticas de disparos (IPI) bem como as formas de ondas dos MUAPs das respectivas UMs são então extraídas e armazenadas para estudos posteriores. Resultados preliminares obtidos com EMGs normais e patológicos, extraídos de membros superiores sob contração fraca, indicam que, o método mostrou-se apto a decompor EMGs de superfícies, além de potencial para aplicações em estudos clínicos não-invasivos de disfunções neuromusculares.Informações sobre as características funcionais e estruturais da unidade motora (UM) são altamente relevantes em investigações fisiológicas e nos estudos clínicos das disfunções neuromusculares. A eletromiografia (EMG) é um método adequado para obtenção dessas informações. Entretanto, devido à dificuldade na separação da atividade individual de uma unidade motora das outras que estão simultaneamente ativas, seu uso em clínica prática se dá comumente através de métodos invasivos, empregando eletrodos de agulha ou fios implantados. Apesar da EMG de superfície ser não-invasiva e, portanto mais apropriada para aplicações clínicas, não é usada em clínica porque não há até o presente um método satisfatório para decomposição do sinal EMG de superfície. Um EMG de superfície é muito mais difícil de decompor devido a significante superposição dos Potenciais de Ação das UMs (MUAPs) e a relação sinal-ruído relativamente baixa, se comparada aos métodos invasivos. Defendemos que a separação da atividade individual das UMs pode ser feita de modo não-invasivo aliando-se técnicas de aquisição altamente especializadas com técnicas usadas em reconhecimento de padrões. Desenvolvemos um método para decomposição de EMGs de superfície, a partir do qual foi possível extrair características relevantes das UMs, que permitem seu uso em avaliação e diagnóstico de desordens neuromusculares. Em nossa abordagem, o sinal EMG é inicialmente captado sob contração isométrica fraca usando eletrodos desuperfície. O sinal EMG bruto passa em seguida por um filtro Diferencial Passa-Baixas Ponderado (DPBP) em série com um detector de picos, que detecta os picos de MUAPs e extrai suas formas de onda. Na sequência, o conjunto de MUAPs extraído é classificado por uma rede neural SOM, e os MUAPs agrupados pela similaridade de suas formas de onda. No próximo passo a informação temporal dos disparos é checada, eliminando possíveis erros de classificação, e finalmente os Trens de MUAPs (MUAPTs) das UMs individuais são reconstituídos do EMG original. As estatísticas de disparos (IPI) bem como as formas de ondas dos MUAPs das respectivas UMs são então extraídas e armazenadas para estudos posteriores. Resultados preliminares obtidos com EMGs normais e patológicos, extraídos de membros superiores sob contração fraca, indicam que, o método mostrou-se apto a decompor EMGs de superfícies, além de potencial para aplicações em estudos clínicos não-invasivos de disfunções neuromusculares. / Information on the functional and structural characteristics of the motor unit (MU) they are highly important in physiologic investigations and in the clinical studies of the neuromuscular dysfunctions. The electromyography (EMG) it is an appropriate method for obtaining of that information. However, due to the difficulty in the separation of the individual activity of a motor unit of the another that are simultaneously active, your use in practical clinic happen commonly through methods invasive, employing needle electrodes or implanted threads. In spite of surface EMG to be non-invasive and, therefore more appropriate for clinical applications, it is not used at clinic because there is not until the present a satisfactory method for decomposition of the surface EMG sign. A surface EMG is much more difficult of decomposing due to significant overlap of the Motor Unit Action Potentials (MUAPs) and the relationship sign-noise relatively low, if compared to the invasive methods. We defended that the separation of the individual activity of MUs can be made in way non-invasive allying highly specialized acquisition techniques with techniques used in recognition of patterns. We developed a method for decomposition of surface EMGs, starting from which was possible to extract important characteristics of MUs, which allow your use in evaluation and diagnosis of neuromuscular disorders. In our approach, the sign EMG is captured initially under weak isometriccontraction using surface electrodes. The sign EMG raw raisin soon after for a Biased Low-Pass Differential filter (BLPD) in series with a detector of peaks, that detects the peaks of MUAPs and it extracts your wave forms. In the sequence, a SOM neural network classifies the set of extracted MUAPs, and MUAPs are clustered by the similarity in your wave shape. In the next step the temporal information of the discharges is checked, eliminating possible classification mistakes, and finally the MUAPs Trains (MUAPTs) of individual MUs they are reconstituted of original EMG. The statistics of discharges (IPI) as well as the forms of waves of MUAPs of respective MUs are then extracted and stored for subsequent studies. Results preliminaries obtained with normal and pathological EMGs, extracted of superior members under weak contraction, they indicate that, the method was shown capable to decompose surfaces EMGs, besides potential for applications in clinical studies non-invasive of neuromuscular dysfunctions.
|
Page generated in 0.1117 seconds