• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

3-D jetting for enhanced functionality of thermoset elastomeric materials

Lukic, Marija January 2017 (has links)
The aim of this work was to assess the feasibility of 3-D inkjet printing of elastomers in latex form to create a novel material that would offer shielding against electromagnetic interference (EMI). To achieve this aim it was necessary to characterise and select suitable materials, carry out ink jetting trials, modify the materials accordingly to improve the printability and assess post jetting conditions including drying and curing behaviour. Particle size, surface tension, and viscosity measurements were made for a series of elastomer latex materials and carboxylated styrene butadiene rubber (XSBR) latex was identified as the most suitable. Latex ink optimisation included dilution with water and the addition of a humectant, triethylene glycol monomethyl ether (TGME), which delayed drying and reduced nozzle blocking. The surface energy was measured for arrange of potential substrates and PET was identified as the most suitable, due to its relatively high surface energy which allowed for an ideal level of wetting and spreading. Analysis of the cross-sectional profiles of the printed samples by white light interferometry showed that drying during printing was an important issue for the latex ink. Ink jetting of a composite material with control of filler distribution was shown to be feasible when ten layers of conductive carbon black ink were deposited alternately between ten layers of XSBR ink. Printing was successfully carried out with a latex combined with a resorcinol resin which was subsequently cured, indicating that it should be possible to 3D print a thermoset elastomer in this way. Conductive carbon black was printed in various patterns onto PET sheet and the dielectric properties measured. Results indicated that at very low carbon contents, the printed patterns could provide EMI shielding. The research has shown that it is feasible to create a cured 3D elastomeric object containing filler with a controlled distribution that is capable of providing EMI shielding.
2

EMI Shielding Materials Derived from PC/SAN Blends Containing Engineered Nanoparticles

Pawar, Shital Patangrao January 2016 (has links) (PDF)
In recent years, increased use of electronic devices and wireless operations resulted in unavoidable electromagnetic (EM) pollution which has a significant impact on civil and military sectors. Considering the foremost requirement, huge efforts were invested in the development of electromagnetic interference (EMI) shielding materials. In this context, metals are usually preferred but design complexities like high density and susceptibility towards corrosion are limiting factors; additionally, the reflection of microwaves from the surface fails to serve as EM absorbers. The concern here is to minimize the reflection of the high frequency electromagnetic wave from the surface and to enhance the microwave absorption in GHz frequencies. In this thesis, we have made an attempt to design EMI shielding materials with exceptional absorption ability derived from Polycarbonate (PC)/ Poly styrene-co-acrylonitrile (SAN) based polymer blends. Herein, unique co-continuous micro-phase separated blend structures with selective localization of microwave active nanoparticles in one of the phases were realized to be most effective for microwave attenuation over just dispersing it in one polymer matrix (i.e. PC and SAN composites). The synergistic attenuation of electric and magnetic field associated with EM radiation was achieved through incorporation of various magnetic nanoparticles, however, dispersion of magnetic nanoparticles was a challenging task. Therefore, in order to localize magnetic nanoparticles in PC phase of the blends and to enhance the dispersion state, various modification strategies have been designed. In summary, we have developed a library of engineered nanoparticles to achieve synergistic attenuation of EM radiation mostly through absorption. For instance, the PC/SAN blends containing MWNTs and rGO-Fe3O4 nanoparticles manifested in exceptional EMI shielding, well above required shielding effectiveness value for most of the commercial applications, essentially through absorption. Taken together, the finding suggests that immiscible blends containing MWNTs and the decoration of magnetic nanoparticles (rGO-Fe3O4) on the surface of reduced graphene oxide sheets can be utilized to engineer high-performance EMI shielding materials with exceptional absorption ability.

Page generated in 0.0977 seconds