• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 169
  • 56
  • 45
  • 24
  • 12
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 3
  • 2
  • 2
  • Tagged with
  • 393
  • 393
  • 140
  • 106
  • 66
  • 65
  • 62
  • 58
  • 55
  • 55
  • 48
  • 43
  • 42
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Role of Ca<sup>2+</sup>-Permeable Cation Channels in Ca<sup>2+</sup> Signalling and Necrotic Cell Death

Wisnoskey, Brian J. 27 May 2004 (has links)
No description available.
112

The Role of Glutamine:Fructose-6-Phosphate Amidotransferase and Protein Glycosylation in Hyperglycemia-Associated Endoplasmic Reticulum Stress

Robertson, Lindsie A. 07 1900 (has links)
<p> Diabetes mellitus is a major independent risk factor for cardiovascular disease (CVD) and stroke, however the cellular mechanisms by which diabetes contributes to vascular dysfunction are not fully understood. In recent decades, multiple molecular mechanisms have been implicated in hyperglycemia-associated vascular damage and CVD [1]. It is well established that hyperglycemia promotes intracellular glucose flux through the hexosamine pathway where the rate-limiting enzyme, glutamine:fructose-6-phosphate amidotransferase (GFAT) produces glucosamine-6-phosphate [2,3]. We have shown that elevated levels of intracellular glucosamine cause ER stress and activation of the UPR in multiple cell types [4]. Additionally, we have previously shown that ER stress is associated with lipid accumulation, activation of inflammatory pathways, and is associated with atherosclerotic plaque formation in hyperglycemic mice [ 4,5]. We hypothesize that the accumulation of intracellular glucosamine, observed in conditions of hyperglycemia, promotes atherogenesis via a mechanism that involves the hexosamine pathway, protein glycosylation and ER stress.</p> <p> Using in vitro over-expression studies, we investigated the role of GFAT in hyperglycemia-associated ER stress. We developed methods to increase GFAT expression in both HepG2 cells and HASMC. However, we found that GFAT over-expression is insufficient to induce an ER stress response. Further investigation of this system suggests that the over-expressed GFAT does not increase intracellular glucosamine levels to sufficiently promote ER stress.</p> <p> We have also investigated the role of protein glycosylation in glucosamine-induced ER stress. We have shown that O-linked glycosylation plays a role in ER stress induction. We have also shown that N-linked protein glycosylation is affected by elevated cellular glucosamine levels. Thus, dysregulated glycosylation of newly synthesized proteins may contribute to the accumulation of unfolded protein in the ER and lead to the activation of the UPR.</p> / Thesis / Master of Science (MSc)
113

Inhibiting endoplasmic reticulum stress prevents the development of hypertensive nephrosclerosis / Protein folding homeostasis maintains renal function

Carlisle, Rachel E. January 2017 (has links)
Endoplasmic reticulum (ER) stress, which results from the aggregation of misfolded proteins in the ER, has been implicated in many forms of kidney injury, including hypertensive nephrosclerosis. ER stress induction increases levels of active TGFβ1, a pro-fibrotic cytokine, which can lead to epithelial-to-mesenchymal transition (EMT) in renal proximal tubular cells. EMT occurs when epithelial cells undergo phenotypic changes, which can be prevented by inhibiting ER stress. Further, the ER stress protein TDAG51 is essential for the development of TGFβ1-mediated fibrosis. The low molecular weight chemical chaperone 4-phenylbutyrate (4-PBA) can protect against ER stress-mediated kidney injury. It acts directly on the kidney, and can prevent ER stress, renal tubular damage, and acute tubular necrosis. In a tunicamycin-mediated model of kidney injury, this damage is prevented primarily through repression of the pro-apoptotic ER stress protein CHOP. Along with providing renoprotective effects, 4-PBA can inhibit endothelial dysfunction and elevated blood pressure in a rat model of essential hypertension. In addition to lowering blood pressure, 4-PBA reduces contractility, augments endothelial-dependent vasodilation, and normalizes media-to-lumen ratio in mesenteric arteries from spontaneously hypertensive rats. Further, ER stress leads to reactive oxygen species generation, which is reduced with 4-PBA. Dahl salt-sensitive rats given 4-PBA are protected from hypertension, proteinuria, albuminuria, and renal pathology. Rats provided with vasodilatory medications demonstrate that lowering blood pressure alone is not renoprotective. In fact, endothelial dysfunction, as demonstrated by an impaired myogenic response, is culpable in the breakdown of the glomerular filtration barrier and subsequent renal damage. As such, alleviating ER stress using 4-PBA serves as a viable therapeutic strategy to preserve renal function and prevent ER stress-mediated endothelial dysfunction, renal fibrosis, glomerular filtration barrier destruction, and progression of hypertensive nephrosclerosis. / Thesis / Doctor of Philosophy (PhD) / Chronic kidney disease is characterized by progressive loss of kidney function, and is a major public health problem. Kidney cells make proteins that help the kidney function properly. However, if the proteins are made improperly, the kidney does not function as well. This can lead to poor filtration and protein in the urine, damage to important kidney structures, and kidney scarring. High blood pressure, a risk factor for kidney disease, is often accused of causing kidney damage. This thesis shows that malfunctioning blood vessels can cause kidney injury, and lowering blood pressure may not prevent this. However, there are pharmacological molecules that can protect the kidney from damage. These molecules help the cells make proteins properly, preventing blood vessel malfunction and kidney damage. Our findings suggest that helping blood vessels and kidney cells create properly functioning proteins is more protective for the kidney than lowering blood pressure alone.
114

Role of the GABARAP Tumor Suppressor in the Control of E.R. Stress and Cell Apoptosis

Assee, Samantha January 2018 (has links)
In response to starvation, mis-folded proteins accumulate in the endoplasmic reticulum (E.R.) causing E.R. stress. This triggers a series of signaling pathways known as the unfolded protein response (UPR). The response helps to both enhance protein folding capacity and initiate mis-folded protein degradation, reducing E.R. stress. Alternatively, misfolded proteins are degraded and nutrients are recycled through autophagy. Thus, E.R. homeostasis depends on both UPR and autophagy. However, if E.R. stress is not resolved, UPR and autophagy can also cause apoptosis by mechanisms that are not fully understood. In chicken embryo fibroblasts, gamma-aminobutyric acid receptor-associated protein or GABARAP (a protein involved in autophagy) can promote apoptosis in conditions of prolonged starvation (Maynard et al. 2015). In these conditions, the down-regulation of GABARAP by shRNA/RNA interference reduces the expression of the pro-apoptotic CHOP (CAAT-enhancer-binding protein homologous protein) transcription factor (a marker of E.R. stress) and enhances cell survival. This suggests that elevated levels of autophagy compromises E.R. homeostasis and promotes the expression of CHOP in UPR lethal pathways. While GABARAP induction and processing/activation has been linked to the expression of CHOP upon prolonged starvation (Maynard et al. 2015), nothing is known about the pathway mediating CHOP expression and the relationship with other pathways of the UPR in cells with GABARAP mis-expression. Understanding these pathways will allow us to determine if GABARAP is a general determinant of E.R. stress or acts specifically on the expression of CHOP to control cell survival. Elucidating mechanisms which are involved in E.R. stress and the cellular transition between pro-survival to pro-apoptotic roles can allow understanding of processes associated with several pathological conditions like cancer and neuro-degenerative diseases. Additionally, establishing a role for GABARAP tumor suppressor in the control of the UPR and cell fate is also important. / Thesis / Bachelor of Science (BSc) / In response to starvation, mis-folded proteins accumulate in the endoplasmic reticulum (E.R.) causing E.R. stress. This activates both the Unfolded Protein Response (UPR) and Autophagy as both processes help to reduce E.R. stress. GABARAP, a protein involved in autophagy, has been shown to be involved in the promotion of apoptosis in conditions of prolonged starvation as its downregulation reduces apoptosis and CHOP expression (Maynard et al. 2015). However, how GABARAP regulates apoptosis remains unknown. Here, we investigate if GABARAP mis-expression affects multiple pathways in the UPR relieving global E.R. stress or if its specifically involved in blocking CHOP expression.
115

Study of zein protein body formation in a heterologous system (<i>Xenopus laevis oocyte</i>)

Lee, Dong-Hee 10 October 2005 (has links)
Most seed storage proteins accumulate in protein bodies which are derived from the vacuole. Zeins, the major corn storage proteins, however, are retained in the endoplasmic reticulum (ER) and their protein bodies are derived from the ER. There are circumstantial and preliminary data indicating that 27K zein, the proline-rich zein, may span the ER membrane. This potential transmembrane feature is considered very significant to understand the mechanism for zeins' ER retention. The transmembrane feature may retain the 27K zein in the ER where it could serve as an anchor for other classes of zein through specific protein interactions. In this study, a heterologous system (<i>Xenopus laevis</i> oocytes) was used to investigate the potential transmembrane domain of 27K zein. This study utilized physical assays of proteolytic digestion (proteinase K) and chemical modification (biotinylation) on isolated protein vesicles from <i>Xenopus</i> oocytes injected with <i>in vitro</i> transcribed 27K zein mRNA. In addition, the transmembrane features were analyzed by monitoring the protein's mobility in the lumen of the ER by pulse-chase experiments. The results showed that the possibility of 27K zein as a transmembrane protein was consistently refuted in this study. The 27K zein protein was not affected by the proteinase K treatment or biotinylation. Moreover, 27K zein and total zeins moved freely in the lumen of the ER similar to a secretory protein (ovalbumin), totally different from an ER membrane protein (a mutant transmembrane hemagglutinin envelope protein). The free movement, within the ER lumen, of total zeins under conditions where zein aggregates should form necessitates a reevaluation of the mechanisms responsible for zein polypeptides' ER retention and protein body formation. This study, therefore, concludes that 27K zein is not a protein body nucleating factor by virtue of an ER transmerrlbrane feature or association with the ER membrane and that the significance of zein solubility should be reconsidered to explain the zeins' ER retention leading to protein body formation in the ER. / Ph. D.
116

Mechanism of endoplasmic reticulum membrane fusion mediated by the Atlastin GTPase

Liu, Tina Yu January 2014 (has links)
How organelles acquire their unique shapes is a fundamental question of cell biology. The peripheral endoplasmic reticulum (ER) consists of a vast network of membrane sheets and tubules, the formation of which requires homotypic membrane fusion. Previous studies suggest that the dynamin-like GTPase, atlastin (ATL), mediates ER fusion, but the mechanism by which this occurs is unclear. In this study, I investigate 1) the role of dimerization and conformational changes in the N-terminal domain of ATL, 2) how the C-terminal amphipathic helix and the transmembrane domain of ATL cooperate with the N-terminal domain, and 3) the formation of cis and trans ATL dimers in the fusion mechanism. ATL has a cytosolic N-terminal domain, consisting of a GTPase domain and three-helix bundle (3HB), followed by two transmembrane segments (TMs) and a cytosolic C-terminal tail (CT). Crystal structures of ATL and biochemical experiments suggest that nucleotide-dependent dimerization between ATL molecules sitting in different membranes can tether the membranes together. A subsequent conformational change triggered by GTP hydrolysis could pull the membranes toward one another for fusion. This mechanism is supported by in vitro membrane tethering and fusion assays using vesicles containing full-length Drosophila ATL. The CT and TMs of ATL are also required for efficient membrane fusion. A synthetic peptide corresponding to a conserved amphipathic helix in the CT can act in trans to restore the fusion activity of a tailless ATL mutant. We characterize CT mutants to show that the C-terminal helix promotes fusion by perturbing the lipid bilayer. The TMs of ATL also mediate nucleotide-independent oligomerization, which may allow ATL molecules in the same membrane to synchronously undergo the conformational change leading to fusion. Lastly, we show that continuous GTP hydrolysis is required for membrane tethering, occasionally resulting in fusion. The N-terminal cytosolic domain mediates trans dimer formation between ATL molecules on different membranes. GTP binding induces dimerization through the GTPase domains and 3HBs. We propose that GTP hydrolysis and phosphate release are required not just to drive fusion, but also to dissociate cis dimers that form on the same membrane, thus allowing ATL molecules to form trans dimers.
117

Characterisation of the novel endoplasmic reticulum chaperone ERDJ5 /

Cunnea, Paula, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2006. / Härtill 4 uppsatser.
118

Lipogenic Proteins in Plants: Functional Homologues and Applications

Cai, Yingqi 12 1900 (has links)
Although cytoplasmic lipid droplets (LDs) are the major reserves for energy-dense neutral lipids in plants, the cellular mechanisms for packaging neutral lipids into LDs remain poorly understood. To gain insights into the cellular processes of neutral lipid accumulation and compartmentalization, a necessary step forward would be to characterize functional roles of lipogenic proteins that participate in the compartmentalization of neutral lipids in plant cells. In this study, the lipogenic proteins, Arabidopsis thaliana SEIPIN homologues and mouse (Mus Musculus) fat storage-inducing transmembrane protein 2 (FIT2), were characterized for their functional roles in the biogenesis of cytoplasmic LDs in various plant tissues. Both Arabidopsis SEIPINs and mouse FIT2 supported the accumulation of neutral lipids and cytoplasmic LDs in plants. The three Arabidopsis SEIPIN isoforms play distinct roles in compartmentalizing neutral lipids by enhancing the numbers and sizes of LDs in various plant tissues and developmental stages. Further, the potential applications of Arabidopsis SEIPINs and mouse FIT2 in engineering neutral lipids and terpenes in plant vegetative tissues were evaluated by co-expressing these and other lipogenic proteins in Nicotiana benthamiana leaves. Arabidopsis SEIPINs and mouse FIT2 represent effective tools that may complement ongoing strategies to enhance the accumulation of desired neutral lipids and terpenes in plant vegetative tissues. Collectively, our findings in this study expand our knowledge of the broader cellular mechanisms of LD biogenesis that are partially conserved in eukaryotes and distinct in plants and suggest novel targets that can be introduced into plants to collaborate with other factors in lipid metabolism and elevate oil content in plant tissues.
119

Insights Into Oxidative Folding Of Retinol Binding Protein In The Endoplasmic Reticulum : A Study In Isolated Microsomes

Rajan, Sundar S 02 1900 (has links)
The central role played by the Endoplasmic Reticulum (ER) in the correct folding and assembly of secretary and membrane proteins cannot be overstated. As the first compartment in the secretary pathway, it is responsible for the synthesis, modification and targeting of proteins to their proper destinations within the secretary pathway and the extracellular space. Protein folding in this specialized compartment is dynamic and involves a host of molecular chaperones and folding catalysts. Once inside the ER lumen, proteins fold into their native conformation and undergo a multitude of post-translational modifications, including N-linked glycosylation and disulfide oxidation. The proper conformational maturation of nascent proteins that traverse the secretary pathway is both aided and monitored by a complex process termed ER quality control. A variety of quality control mechanisms that rely on the chaperone systems operate in the ER. These act in close concert with the molecular machinery involved in degradation of non-native proteins to maintain homeostasis. The common goal of these mechanisms is to prevent expression and secretion of misfolded proteins. As a general rule, only those proteins that have successfully completed their folding and passed a stringent selection process are allowed to exit the ER on their way to their final destinations. The importance of the normal functioning of the ER is underlined by the fact that disruption in protein folding, resulting in ER stress, has now been identified as the biochemical basis of many ER storage diseases including Diabetes mellitus, Endocrinopathies and Hemophilia A. Processing events occurring inside the ER lumen are known to influence the efficiency of protein secretion. Vastly different rates of exocytose observed among secretary proteins have been found to correlate with the rate of exit from the ER. One such example is the interesting secretion property exhibited by Retinol Binding Protein (RBP) The principal carrier of retinol (Vitamin A) in plasma. RBP is a single domain protein consisting of three intramolecular disulfide bonds and helps transport retinol from the liver stores to the various target tissues in the body. Availability of its ligand, retinol, while not affecting its synthesis, is known to be the major factor in regulating RBP secretion from the liver. In the absence of retinol, apo-RBP has been shown to be retained in the ER by a hitherto unclear mechanism. Like most other secretary proteins, RBP is co-translationally targeted to the ER lumen, where it undergoes disulfide oxidation as the only modification. It has been shown to form a complex with another secretary protein, Transthyretin (TTR) in the ER and this complex formation is thought to prevent premature glomerular filtration of the otherwise small RBP with its bound retinol. Despite attaining a mature conformation, apo-RBP is not secreted and awaits conversion to its ligand-bound, holo form in order to exit the ER. It is widely believed that ligand binding may relieve this retention of RBP from the ER quality control machinery. However the precise mechanisms that mediate and regulate RBP folding, ligand binding, TTR assembly and secretion are not clearly understood. Though the folding and secretion properties of RBP have been described in HepG2 cells, its interactions with the ER resident chaperones have not been addressed. Apart from being an important cell biological question, the study of RBP assumes a lot of significance with its recent emergence as a key player in the pathogenesis of type 2 diabetes mellitus. It has been proposed that lowering of serum RBP levels could be a new strategy for treating type 2 diabetes mellitus. The present study was undertaken with the intention of analyzing the oxidative folding of RBP in the ER more closely. A systematic approach aimed at understanding the early events associated with folding and maturation of RBP, with particular emphasis on the role of ER-resident chaperones and the quality control machinery, is likely to provide interesting insights into the mechanisms involved in its ligand dependent secretion. Reconstitution of RBP biogenesis in a cell free system. The folding of RBP in cells is extremely quick with rapid oxidation kinetics. This makes it difficult to systematically analyze the early folding events in cultured cells. It was necessary to make use of a simplified system that would faithfully recapitulate the folding process in the ER. Therefore, a cell free translation system consisting of rabbit reticulocyte lysate and canine pancreatic microcosms as a source of ER-derived membranes was developed. This system affords the advantage of easy manipulation while still preserving the overall environment that prevails in the ER of intact cells. Extensive biochemical and functional characterization of the isolated microcosms was carried out and in vitro translation and microsomal translocation of RBP was established. Though initially confined to studies on membrane insertion and core glycosylate, the cell free system supplemented with microcosms has subsequently been used to analyze folding and assembly of a number of secretary and membrane proteins. A similar strategy has been adopted in the present study of RBP folding and maturation. Oxidative folding of RBP in isolated microcosms: Delineation of its disulfide oxidation pathway Using glutathione (GSSG) as the oxidant, co- and posttranslational disulfide oxidation of RBP was carried out in isolated microcosms. The ability to manipulate the redox status of this cell free system has helped to considerably slow down the oxidative folding of RBP so that a more careful analysis of the folding process could be performed. RBP was found to undergo oxidative folding with a t1/2 of 30 minutes and folding proceeded through at least one disulfide-bonded intermediate. Non-reducing SDS PAGE was used to resolve the folding intermediates. The pattern of oxidation was in good agreement with that reported earlier in HepG2 cells. No significant effect of retinol was observed on either the folding kinetics or the pattern of disulfide oxidation of RBP in isolated microsomes.A DTT sensitivity assay, used to probe the conformational maturity of folding RBP, revealed that RBP was capable of maturing into a DTT-resistant conformation in isolated microsomes. With the aid of disulfide mutants, the probable disulfide oxidation pathway of RBP in the ER has been determined. Single and double disulfide mutants of RBP were generated by site-directed mutagenesis and their posttranslational oxidation patterns were analyzed and compared with that of the wild type protein. Based on the results obtained, it was clear that the folding intermediate was made up of one of the two big disulfide loops and that the presence of both these loops was essential for RBP to fold into a fully oxidized, compact form. It has not been possible to determine the contribution of the third, smallest disulfide loop to the oxidative folding of RBP. Molecular events associated with the early oxidative folding of RBP To gain insights into the possible role of ER chaperones in the oxidative folding of RBP, the oligomeric state of folding RBP was analyzed by velocity sedimentation and chemical crosslinking assays. Velocity sedimentation analysis revealed that the reduced form of RBP was present in a large complex of size >100 S20,W. Upon disulfide oxidation, it readily dissociated from the complex and assumed a monomeric state. This was evident even during co-translational oxidation which suggested that RBP transiently associated with the large complex during its oxidative folding. Dynamic nature of this complex indicated that this could be a folding complex containing the chaperone machinery of the ER. These results were also supported by crosslinking analysis performed in unbroken microsomes using the homo-bifunctional crosslinker, DSP. The early folding forms of RBP could be crosslinked to a large complex while upon disulfide oxidation, RBP matured to its monomeric form and was no longer crosslinkable. Sedimentation and crosslinking analyses of the RBP disulfide mutants revealed that while the double disulfide mutant remained irreversibly associated with the large complex, the single mutants were released upon acquiring one of the two big disulfide loops. This suggested that despite the lack of one of the two major disulfides, these mutants were considered ‘folded’ by the quality control machinery in the ER while the double mutant probably resembled a molten globule state and was therefore considered ‘unfolded’ and irreversibly retained. Results from crosslinking analysis in microsomes not engaged in active translation suggested that chaperones of the ER were organized in a complex constitutively thereby lending support to the concept of ER-matrix, a large network of luminal proteins consisting of ER chaperones and accessory factors. Given this scenario, it is not unlikely that newly synthesized protein substrates transiently associate with this large pre-existing complex of chaperones and dissociate during late stages of their maturation. Conclusion In all, this study provides significant insights into some of the early events associated with the oxidative folding of RBP in the ER. The delineation of the disulfide oxidation pathway of RBP has been possible. The results obtained from this study suggest that RBP probably dissociates from the quality control quite early during its folding process and this step in its maturation might not be influenced by retinol. The stimulus for its ligant dependent secretion is likely to operate at a later stage of its sojourn in the ER, possibly consequent to positive cues from accessory binding factors such as TTR. Lastly, Perservation of the ER microenvironment in isolated microsomes, as evidenced from this study, augurs well for the use of this system to analyze mechanisms underlying folding, maturation, secretion and/or retention of secretory proteins.
120

Exploiting DNA Repair and ER Stress Response Pathways to Induce Apoptosis in Glioblastoma Multiforme: A Dissertation

Weatherbee, Jessica L. 05 August 2016 (has links)
Glioblastoma multiforme (GBM) is a deadly grade IV brain tumor characterized by a heterogeneous population of cells that are drug resistant, aggressive, and infiltrative. The current standard of care, which has not changed in over a decade, only provides GBM patients with 12-14 months survival post diagnosis. We asked if the addition of a novel endoplasmic reticulum (ER) stress inducing agent, JLK1486, to the standard chemotherapy, temozolomide (TMZ), which induces DNA double strand breaks (DSBs), would enhance TMZ’s efficacy. Because GBMs rely on the ER to mitigate their hypoxic environment and DNA repair to fix TMZ induced DSBs, we reasoned that DSBs occurring during heightened ER stress would be deleterious. Treatment of GBM cells with TMZ+JLK1486 decreased cell viability and increased cell death due to apoptosis. We found that TMZ+JLK1486 prolonged ER stress induction, as indicated by elevated ER stress marker BiP, ATF4, and CHOP, while sustaining activation of the DNA damage response pathway. This combination produced unresolved DNA DSBs due to RAD51 reduction, a key DNA repair factor. The combination of TMZ+JLK1486 is a potential novel therapeutic combination and suggests an inverse relationship between ER stress and DNA repair pathways.

Page generated in 0.0298 seconds