• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 1
  • Tagged with
  • 10
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Plasmonic Metasurfaces

Tahir, Asad Ahmad January 2016 (has links)
Nanophotonics is a booming field of research with the promise of chip-scale devices which harness the tremendous potency of light. In this regard, surface plasmons have shown great potential for confining and manipulating light at extreme sub-wavelength scales. Advances in fabrication technology have enabled the scientific community to realize metasurfaces with unconventional properties that push the limits of possible applications of light. This thesis is comprised of computational and experimental studies on plasmonic metasurfaces. The computational study presents efficient design principles for plasmonic half-wave plates using L-shaped nanoantennas. These principles can be used to design waveplates at an operating wavelength of choice and for specific application requirements. The impact of this study goes beyond the efficient design of waveplates: it provides useful insights into the Physics of L-shaped nanoantenna arrays which have been proposed as building blocks for plasmonic metasurfaces. The experimental work investigates the interaction of a plasmonic metasurface, composed of dipole antenna arrays, with an epsilon-near-zero (ENZ) material. This work thus forms a bridge between plasmonics and ENZ materials science, which is a rapidly advancing field in its own right. The first experimental study investigates the exciting unconventional response of plasmonic dipole antennas when placed on a thin indium tin oxide (ITO) film near its ENZ wavelength of 1417 nm. The antenna-on-ITO system has split resonances whose spectral positions are largely independent of the antenna dimensions. The resonance splitting occurs due to coupling between the antenna resonance and the ENZ mode of the ITO film. This coupling results in field intensity enhancements on the order of a 100 in the ITO film. The second experimental study demonstrates, using the z-scan method, that this large field enhancement in the antenna-on-ITO structure further enhances the already strong nonlinearity of ITO around its ENZ wavelength. In particular, the antenna-on-ITO structure exhibits an extremely large nonlinear absorption coefficient, which is two orders of magnitude larger than that of a bare ITO film, and three to five orders of magnitude larger than that of many other nonlinear materials. This thesis thus constitutes a beautiful blend of three thriving areas of research: plasmonics, ENZ materials science and nonlinear optics. The findings reported here have the potential to contribute to all of these fields, and thus have relevance to a broad spectrum of optical scientists.
2

Epsilon-near-zero waveguide-to-coaxial matching and multiband gap launcher antenna

Soric, Jason Christopher 14 February 2011 (has links)
The design and use of metamaterials have shown exciting applications in electrical engineering, physics, optics, and other science fields that are expanding our physical understanding and leading to unprecedented performance of many standard devices such as antennas, microwave circuits, and sensors. The manufacturing of metamaterials, while ingenious, has typically been exotic and depended on the inclusion of sub-wavelength particles in a host medium to tailor the effective characteristics of a material. This work verifies a much more simple approach to realizing a kind of metamaterial, the epsilon-near-zero (ENZ) metamaterial. The intriguing aspect of this metamaterial is that while it is simple to realize, it is a novel approach to many practical applications such as the tunneling energy through highly discontinuous bends and abruptions, cloaking of sensors, miniaturization of microwave components, and design of highly directive antennas. Further, the physics and mathematical formulation of these ENZ materials is both intriguing and counterintuitive. / text
3

Buchbesitz im Herzogtum Württemberg im 18. Jahrhundert am Beispiel der Amtsstadt Wildberg und des Dorfes Bissingen/Enz /

Schad, Petra. January 2002 (has links)
Zugl.: Stuttgart, Univ., Diss., 1999.
4

Buchbesitz im Herzogtum Württemberg im 18. Jahrhundert am Beispiel der Amtsstadt Wildberg und des Dorfes Bissingen, Enz /

Schad, Petra. January 2002 (has links) (PDF)
Universiẗat, Diss., 1998/1999--Stuttgart.
5

Buchbesitz im Herzogtum Württemberg im 18. Jahrhundert am Beispiel der Amtsstadt Wildberg und des Dorfes Bissingen/Enz /

Schad, Petra, January 2002 (has links)
Thesis (doctoral)--Universität, Stuttgart, 1999. / Includes bibliographical references (p. [256]-258) and index.
6

Der Wagen und das Pferdegeschirr aus dem späthallstattzeitlichen Fürstengrab von Eberdingen-Hochdorf (Kr. Ludwigsburg)

Koch, Julia K. Unknown Date (has links) (PDF)
Universiẗat, Diss., 1999--Kiel.
7

Microscopy - Point Spread Function, Focus, Resolution

NÁHLÍK, Tomáš January 2015 (has links)
The aim of this thesis was to design new algorithms for processing image data from microscopes and demonstration of the possibilities of their use on standard samples (latex particles of different diameter). Results were used for the analysis of real objects inside the living mammalian cell. For the design of these algorithms was necessary to first understand how the image in the microscope is build, including a variety of lens aberrations. It was necessary to start with simulations of ideal case displaying one point (simulation PSF). Images of Airy discs in the plane of focus, or simulations using the ENZ theory. Available ENZ simulations provide only a few sections of different focal planes. It was necessary to adjust them to a usable form for generating a full 3D view. Using these algorithms, it was examined the behavior of the basic lens aberrations, and the behavior of two particles (objects) at different distances from each other. At the conclusion of these observations, it was necessary to redefine the terms Focus and resolution. Furthermore, the definitions have been introduced for discriminability and distinguishability of objects in an image. Thanks to the new definitions and new viewing (information entropy) to challenge the discriminability/distinguishability problem of objects in the image was possible to design and develop algorithms for image processing that enable to detect objects below the Abbe resolution condition using standard optical bright field microscopy. It has been found experimentally that the limiting factor for resolution using this method is the size and resolution of the camera chip. When using a chip with a higher density of points, we can achieve better results (detection of smaller objects) using the same algorithms.
8

Metodologia experimental de desenvolvimento de grades metamateriais com permissividade quase-zero e negativa / Experimental methodology to development of metamaterial grids with near-zero and negative permittivity

Sartori, Eduardo Jose 14 August 2018 (has links)
Orientador: Hugo E. Hernandez Figueroa / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-14T23:26:41Z (GMT). No. of bitstreams: 1 Sartori_EduardoJose_D.pdf: 11903812 bytes, checksum: 6e06f001155d33b841c61ae93464c897 (MD5) Previous issue date: 2009 / Resumo: Metamateriais são estruturas ou arranjos geométricos feitos a partir de materiais comuns, dielétricos, condutores, magnéticos ou por combinação destes. Os metamateriais caracterizam-se principalmente por apresentarem propriedades especiais de permissividade ( e) e permeabilidade ( µ) não encontradas nos materiais em estado natural, cujo principal efeito é o índice negativo de refração (n < 0). Essas características permitem seu emprego em diversos tipos de aplicações em eletromagnetismo e óptica, tais como filtros passa-faixa e rejeita-faixa, espelhos dielétricos, super lentes etc. Normalmente, o equacionamento envolvido no cálculo de parâmetros dos metamateriais são complexos e, na maioria das vezes, necessitam de apoio computacional. Por este motivo, o presente trabalho traz um estudo experimental sobre dois tipos de comportamento metamaterial, o de permissividade quase-zero e negativa, analisando seu desempenho sob vários aspectos geométricos e de características dos materiais envolvidos, além de propor uma metodologia de desenvolvimento, a qual possibilita um rápido dimensionamento de diversos tipos de grades metamateriais, baseada em cálculos simples ou consulta direta a tabelas e curvas de projeto. / Abstract: Metamaterials are structures or geometric arrangements made from common materials, dielectrics, conductors, magnetic or a combination of these. Metamaterials are characterized mainly because of their special characteristics of permittivity ( e) and permeability ( µ), not found in the materials at natural state, whose main effect is the negative index of refraction (n <0). These characteristics allow its use in several types of applications in electromagnetism and optics, such as band-pass and band-stop filters, dielectric mirrors, super lenses etc.. Typically, the equations involved in the calculation of parameters of metamaterials are complex and, in most cases, require high capability computational methods. For this reason, this work presents an experimental study on two types of metamaterial behavior, near-zero and negative permittivity, examining its performance in several geometric aspects and characteristics of the materials involved, and propose a development methodology, which allows a fast scaling of various types of metamaterials grids, based on simple calculations or direct consultation tables and curves design. / Doutorado / Telecomunicações e Telemática / Doutor em Engenharia Elétrica
9

Near field phenomena in dipole radiation

Xu, Zhangjin 01 May 2020 (has links)
In this dissertation we have studied nearield phenomena in dipole radiation. We have studied first the energy flow patterns of the radiation emitted by an electric dipole located in between parallel mirrors. The field lines of the Poynting vector have intricate structures, including many singularities and vortices. For a dipole parallel to the mirror surfaces, vortices appear close to the dipole. Vortices are located where the magnetic field vanishes. Also, a radiating electric dipole near the joint of two orthogonal mirrors is considered, and also here we find numerous singularities and vortices in the energy flow patterns. We have also studied the current density in the mirrors. Next we have studied the reflection of radiation by and the transmission of radiation through an interface with an  -near-zero (ENZ) material. For p polarization, we find that the reflection coefficient is -1, and the transmission coefficient is zero for all angles of incidence. The transmitted electric field is evanescent and circularly polarized. The transmitted magnetic field is identically zero. For s polarization, the transmitted electric field is s polarized and the transmitted magnetic field is circularly polarized. The next topic was the study of the force exerted on the dipole by its own reflected field near an ENZ interface. We found that, under certain circumstances, it could be possible that the dipole would levitate in its reflected field. This levitation is brought about by evanescent reflected waves. Finally, power emission by an electric dipole near an interface was considered. We have derived expressions for the emitted power crossing an interface. The power splits in contributions from traveling and evanescent incident waves. We found that for an ENZ interface, only evanescent dipole waves penetrate the material, but there is no net power flow into the material.
10

Omnidirectional Phase Matching In Zero-Index Media

Gagnon, Justin 22 April 2021 (has links)
Since its inception, the field of nonlinear optics has only increased in importance as a result of a growing number of applications. The efficiency of all parametric nonlinear optical processes is limited by challenges associated with phase-matching requirements. To address this constraint, a variety of approaches, such as quasi-phase-matching, birefringent phase matching, and higher-order-mode phase matching have historically been used to phase-match interactions. However, the methods demonstrated to date suffer from the inconvenience of only being phase-matched for one specific arrangement of beams, typically co-propagating along the same axis. This stringency of the phase-matching requirement results in cumbersome optical configurations and large footprints for integrated devices. In this thesis, we show that phase-matching requirements in parametric nonlinear optical processes may be satisfied for all orientations of input and output beams when using zero-index media: a condition of omnidirectional phase matching. To validate this theory, we perform experimental demonstrations of phase matching for five separate FWM beam configurations to confirm this phenomenon. Our measurements constitute the first experimental observation of the simultaneous generation of a forward- and backward-propagating signal with respect to the pump beams in a medium longer than a free-space optical wavelength, allowing us to determine the coherence length of our four-wave-mixing process. Our demonstration includes nonlinear signal generation from spectrally distinct counter-propagating pump and probe beams, as well as the excitation of a parametric process with the probe beam's wave vector orthogonal to the wave vector of the pump beam. By sampling all of these beam configurations, our results explicitly demonstrate that the unique properties of zero-index media relax traditional phase-matching constraints, and provide strong experimental evidence for the existence of omnidirectional phase matching in zero-index media. This property can be exploited to facilitate nonlinear interactions and miniaturize nonlinear devices, and adds to the established exceptional properties of low-index materials.

Page generated in 0.0371 seconds