• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Processo de produ??o de erva-mate descafeinada e de micro/nanopart?culas de cafe?na usando di?xido de carbono supercr?tico

Brun, Gerti Weber 30 March 2012 (has links)
Made available in DSpace on 2015-04-14T13:58:46Z (GMT). No. of bitstreams: 1 437800.pdf: 2143579 bytes, checksum: 27291e3f6641f7a5b986a21239266159 (MD5) Previous issue date: 2012-03-30 / The decaffeination of leaves of yerba mate is economically attractive, since it allows to obtain products of commercial interest and caffeine, a byproduct used in food and pharmaceutical industries. In this work we used the extraction and precipitation with supercritical carbon dioxide to obtain the decaffeinated yerba mate and micro/nanoparticles of the caffeine. The decaffeinated yerba mate and extract were obtained from the dry leaves on automated pilot plant. The mathematical modeling was realized with the extraction curves defining the condition of the pressure and temperature for higher yield and lower caffeine content in yerba mate. For the micronization process based on the use of supercritical carbon dioxide as antisolvent (SAS process, Supercritical AntiSolvent) it was used a semi-continuous pilot plant. The influence of the initial concentration, the temperature and the pressure in the yield, in the particle size, in the morphology and polymorphism were analyzed. The results demonstrated that carbon dioxide is selective for caffeine and the condition which obtains higher yields of extract and less content of the caffeine in the extracted yerba mate was 15.0 MPa and 323,15 K . The average reduction of caffeine in yerba mate was 40%. The particles were micronized from caffeine solution with dichloromethaneand the analysis of the product showed a narrower range of sizes (2.5 to 6.5 μm) in comparison to unprocessed caffeine (12.2 μm) with an increment of the purity of caffeine. We also found that with proper selection of process parameters such as temperature, pressure and initial concentration, it is possible to produce particles of caffeine with different degrees of crystallinity and distinct quantities of polimorphics. / A descafeiniza??o de folhas de erva-mate ? economicamente atrativa, pois possibilita a obten??o de produtos descafeinados de interesse comercial e cafe?na, um bioproduto utilizado na ind?stria aliment?cia e farmac?utica. Neste trabalho utilizaram-se a extra??o e a precipita??o supercr?tica com di?xido de carbono para obten??o da erva mate descafeinada e de micro/nanopart?culas de cafe?na. A ervamate descafeinada e o extrato foram obtidos a partir da erva-mate seca em uma planta piloto automatizada. Com as curvas de extra??o procedeu-se a modelagem matem?tica definindo qual a condi??o de press?o e temperatura de extra??o para maior rendimento e menor teor de cafe?na na erva-mate. O processo de microniza??o baseou-se no uso do di?xido de carbono supercr?tico como antisolvente (processo SAS Supercritical Antisolvent) em uma planta piloto semicont?nua. A influ?ncia da concentra??o inicial, temperatura e press?o no rendimento, tamanho de part?cula, morfologia e polimorfismo foram analisados. Os resultados demonstraram que o di?xido de carbono ? seletivo para a cafe?na e que a condi??o em que se obt?m o maior rendimento de extrato e menor quantidade em massa de cafe?na na erva-mate extra?da ? a de 15,0 MPa e 323,15 K. A redu??o m?dia da cafe?na na erva-mate foi de 40%. As part?culas de cafe?na foram micronizadas a partir de solu??es com diclorometano. A an?lise do produto apresentou uma faixa mais estreita de tamanhos (2,5 a 6,5 μm) em compara??o com a cafe?na n?o processada (12,2 μm), com aumento de pureza da cafe?na. Foi encontrado tamb?m que com adequada sele??o dos par?metros do processo como temperatura, press?o e concentra??o inicial, ? poss?vel produzir part?culas de cafe?na com distintos graus de cristalinidade e diferentes quantidades dos polim?rficos.

Page generated in 0.025 seconds