• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental study of density fluctuations in the STOR-M tokamak by small-angle microwave scattering

Livingstone, Stephen 27 January 2006
Density fluctuations in high temperature fusion plasmas have been a central challenge to the development of fusion power. They are the cause of excessive anomalous losses from the plasma and are still not fully understood. A microwave scattering experiment is performed on the Saskatchewan Torus-Modified (STOR-M) tokamak for the first time to study these density fluctuations with wave-numbers in the range <b><i>k</i></b> = 5 /cm to 10 /cm. The fluctuations are found to follow <i>k¦Ñ<sub>s</sub></i> scaling consistent with ion drift waves; signatures of the electron temperature gradient (ETG) mode connected with anomalous electron losses are not detected. The fluctuation level in the STOR-M is measured to be <i>n<sub>tilda</sub>/n</i> ¡Ö 0.1 at a mean perpendicular wave-number of <b><i>k</b><sub>perp</sub></b></i> ¡Ö 7 /cm and is reported for the first time. The fluctuation levels are inversely proportional to the energy confinement time suggesting that these fluctuations are driving anomalous particle and energy losses from the STOR-M. The system is now fully operational and this work paves the way for future experiments with this equipment.
2

Experimental study of density fluctuations in the STOR-M tokamak by small-angle microwave scattering

Livingstone, Stephen 27 January 2006 (has links)
Density fluctuations in high temperature fusion plasmas have been a central challenge to the development of fusion power. They are the cause of excessive anomalous losses from the plasma and are still not fully understood. A microwave scattering experiment is performed on the Saskatchewan Torus-Modified (STOR-M) tokamak for the first time to study these density fluctuations with wave-numbers in the range <b><i>k</i></b> = 5 /cm to 10 /cm. The fluctuations are found to follow <i>k¦Ñ<sub>s</sub></i> scaling consistent with ion drift waves; signatures of the electron temperature gradient (ETG) mode connected with anomalous electron losses are not detected. The fluctuation level in the STOR-M is measured to be <i>n<sub>tilda</sub>/n</i> ¡Ö 0.1 at a mean perpendicular wave-number of <b><i>k</b><sub>perp</sub></b></i> ¡Ö 7 /cm and is reported for the first time. The fluctuation levels are inversely proportional to the energy confinement time suggesting that these fluctuations are driving anomalous particle and energy losses from the STOR-M. The system is now fully operational and this work paves the way for future experiments with this equipment.

Page generated in 0.0324 seconds