Spelling suggestions: "subject:"EWMA chart"" "subject:"EWMA shart""
1 |
Variable Sampling Rate Control Charts for Monitoring Process VarianceHughes, Christopher Scott 20 May 1999 (has links)
Industrial processes are subject to changes that can adversely affect product quality. A change in the process that increases the variability of the output of the process causes the output to be less uniform and increases the probability that individual items will not meet specifications.
Statistical control charts for monitoring process variance can be used to detect an increase in the variability of the output of a process so that the situation can be repaired and product uniformity restored. Control charts that increase the sampling rate when there is evidence the variance has changed gather information more quickly and detect changes in the variance more quickly (on average) than fixed sampling rate procedures. Several variable sampling rate procedures for detecting increases in the process variance will be developed and compared with fixed sampling rate methods.
A control chart for the variance is usually used with a separate control chart for the mean so that changes in the average level of the process and the variability of the process can both be detected. A simple method for applying variable sampling rate techniques to dual monitoring of mean and variance will be developed. This control chart procedure increases the sampling rate when there is evidence the mean or variance has changed so that changes in either parameter that will negatively impact product quality will be detected quickly. / Ph. D.
|
2 |
The Design of GLR Control Charts for Process MonitoringXu, Liaosa 27 February 2013 (has links)
Generalized likelihood ratio (GLR) control charts are investigated for two types of statistical process monitoring (SPC) problems.
The first part of this dissertation considers the problem of monitoring a normally distributed process variable when a special cause may produce a time varying linear drift in the mean. The design and application of a GLR control chart for drift detection is investigated. The GLR drift chart does not require specification of any tuning parameters by the practitioner, and has the advantage that, at the time of the signal, estimates of both the change point and the drift rate are immediately available. An equation is provided to accurately approximate the control limit. The performance of the GLR drift chart is compared to other control charts such as a standard CUSUM chart and a CUSCORE chart designed for drift detection. We also compare the GLR chart designed for drift detection to the GLR chart designed for sustained shift detection since both of them require only a control limit to be specified. In terms of the expected time for detection and in terms of the bias and mean squared error of the change-point estimators, the GLR drift chart has better performance for a wide range of drift rates relative to the GLR shift chart when the out-of-control process is truly a linear drift.
The second part of the dissertation considers the problem of monitoring a linear functional relationship between a response variable and one or more explanatory variables (a linear profile). The design and application of GLR control charts for this problem are investigated. The likelihood ratio test of the GLR chart is generalized over the regression coefficients, the variance of the error term, and the possible change-point. The performance of the GLR chart is compared to various existing control charts. We show that the overall performance of the GLR chart is much better than other options in detecting a wide range of shift sizes. The existing control charts designed for certain shifts that may be of particular interest have several chart parameters that need to be specified by the user, which makes the design of such control charts more difficult. The GLR chart is very simple to design, as it is invariant to the choice of design matrix and the values of in-control parameters. Therefore there is only one design parameter (the control limit) that needs to be specified. Especially, the GLR chart can be constructed based on the sample size of n=1 at each sampling point, whereas other charts cannot be applied. Another advantage of the GLR chart is its built-in diagnostic aids that provide estimates of both the change-point and the values of linear profile parameters. / Ph. D.
|
3 |
Určování způsobilosti a stability vybraného technického procesu / Determination of capability and stability of a chosen technical processŠváchová, Mariana January 2020 (has links)
This diploma thesis deals with the evaluation of the capability of a specific production process. The theoretical part of the work contains a description of statistical process control, types of control charts and evaluation of process capability. The practical part is focused on evaluating the capability of a specific process. The method of dataset collection is described at first, then this data are analyzed and the capability of this process is evaluated.
|
Page generated in 0.033 seconds