• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Statistical Monitoring and Control of Locally Proactive Routing Protocols in MANETs

January 2012 (has links)
abstract: Mobile ad hoc networks (MANETs) have attracted attention for mission critical applications. This dissertation investigates techniques of statistical monitoring and control for overhead reduction in a proactive MANET routing protocol. Proactive protocols transmit overhead periodically. Instead, we propose that the local conditions of a node should determine this transmission decision. While the goal is to minimize overhead, a balance in the amount of overhead transmitted and the performance achieved is required. Statistical monitoring consists of techniques to determine if a characteristic has shifted away from an in-control state. A basic tool for monitoring is a control chart, a time-oriented representation of the characteristic. When a sample deviates outside control limits, a significant change has occurred and corrective actions are required to return to the in-control state. We investigate the use of statistical monitoring of local conditions in the Optimized Link State Routing (OLSR) protocol. Three versions are developed. In A-OLSR, each node uses a Shewhart chart to monitor betweenness of its two-hop neighbourhood. Betweenness is a social network metric that measures a node's influence; betweenness is larger when a node has more influence. Changes in topology are associated with changes in betweenness. We incorporate additional local node conditions including speed, density, packet arrival rate, and number of flows it forwards in A+-OLSR. Response Surface Methodology (RSM) is used to optimize timer values. As well, the Shewhart chart is replaced by an Exponentially Weighted Moving Average (EWMA) chart, which is more sensitive to small changes in the characteristic. It is known that control charts do not work as well in the presence of correlation. Hence, in A*-OLSR the autocorrelation in the time series is removed and an Auto-Regressive Integrated Moving Average (ARIMA) model found; this removes the dependence on node speed. A*-OLSR also extends monitoring to two characteristics concurrently using multivariate cumulative sum (MCUSUM) charts. The protocols are evaluated in simulation, and compared to OLSR and its variants. The techniques for statistical monitoring and control are general and have great potential to be applied to the adaptive control of many network protocols. / Dissertation/Thesis / Ph.D. Computer Science 2012
2

Evaluation of Scan Methods Used in the Monitoring of Public Health Surveillance Data

Fraker, Shannon E. 07 December 2007 (has links)
With the recent increase in the threat of biological terrorism as well as the continual risk of other diseases, the research in public health surveillance and disease monitoring has grown tremendously. There is an abundance of data available in all sorts of forms. Hospitals, federal and local governments, and industries are all collecting data and developing new methods to be used in the detection of anomalies. Many of these methods are developed, applied to a real data set, and incorporated into software. This research, however, takes a different view of the evaluation of these methods. We feel that there needs to be solid statistical evaluation of proposed methods no matter the intended area of application. Using proof-by-example does not seem reasonable as the sole evaluation criteria especially concerning methods that have the potential to have a great impact in our lives. For this reason, this research focuses on determining the properties of some of the most common anomaly detection methods. A distinction is made between metrics used for retrospective historical monitoring and those used for prospective on-going monitoring with the focus on the latter situation. Metrics such as the recurrence interval and time-to-signal measures are therefore the most applicable. These metrics, in conjunction with control charts such as exponentially weighted moving average (EWMA) charts and cumulative sum (CUSUM) charts, are examined. Two new time-to-signal measures, the average time-between-signal events and the average signal event length, are introduced to better compare the recurrence interval with the time-to-signal properties of surveillance schemes. The relationship commonly thought to exist between the recurrence interval and the average time to signal is shown to not exist once autocorrelation is present in the statistics used for monitoring. This means that closer consideration needs to be paid to the selection of which of these metrics to report. The properties of a commonly applied scan method are also studied carefully in the strictly temporal setting. The counts of incidences are assumed to occur independently over time and follow a Poisson distribution. Simulations are used to evaluate the method under changes in various parameters. In addition, there are two methods proposed in the literature for the calculation of the p-value, an adjustment based on the tests for previous time periods and the use of the recurrence interval with no adjustment for previous tests. The difference in these two methods is also considered. The quickness of the scan method in detecting an increase in the incidence rate as well as the number of false alarm events that occur and how long the method signals after the increase threat has passed are all of interest. These estimates from the scan method are compared to other attribute monitoring methods, mainly the Poisson CUSUM chart. It is shown that the Poisson CUSUM chart is typically faster in the detection of the increased incidence rate. / Ph. D.

Page generated in 0.0511 seconds