• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FITTING A DISTRIBUTION TO CATASTROPHIC EVENT

Osei, Ebenezer 15 December 2010 (has links)
Statistics is a branch of mathematics which is heavily employed in the area of Actuarial Mathematics. This thesis first reviews the importance of statistical distributions in the analysis of insurance problems and the applications of Statistics in the area of risk and insurance. The Normal, Log-normal, Pareto, Gamma, standard Beta, Frechet, Gumbel, Weibull, Poisson, binomial, and negative binomial distributions are looked at and the importance of these distributions in general insurance is also emphasized. A careful review of literature is to provide practitioners in the general insurance industry with statistical tools which are of immediate application in the industry. These tools include estimation methods and fit statistics popular in the insurance industry. Finally this thesis carries out the task of fitting statistical distributions to the flood loss data in the 50 States of the United States.
2

Statistická analýza rozdělení extrémních hodnot pro cenzorovaná data / Statistical Analysis of Extreme Value Distributions for Censored Data

Chabičovský, Martin January 2011 (has links)
The thesis deals with extreme value distributions and censored samples. Theoretical part describes a maximum likelihood method, types of censored samples and introduce a extreme value distributions. In the thesis are derived likelihood equations for censored samples from exponential, Weibull, lognormal, Gumbel and generalized extreme value distribution. For these distributions are also derived asymptotic interval estimates and is made simulation studies on the dependence of the parameter estimate on the percentage of censoring.
3

Development Of Methods For Structural Reliability Analysis Using Design And Analysis Of Computer Experiments And Data Based Extreme Value Analysis

Panda, Satya Swaroop 06 1900 (has links)
The work reported in this thesis is in the area of computational modeling of reliability of engineering structures. The emphasis of the study is on developing methods that are suitable for analysis of large-scale structures such as aircraft structure components. This class of problems continues to offer challenges to an analyst with the most difficult aspect of the analysis being the treatment of nonlinearity in the structural behavior, non-Gaussian nature of uncertainties and quantification of low levels of probability of failure (of the order of 10-5 or less), requiring significant computational effort. The present study covers static/ dynamic behavior, Gaussian/ non-Gaussian models of uncertainties, and (or) linear/ nonlinear structures. The novel elements in the study consist of two components: • application of modeling tools that already exists in the area of design and analysis of computer experiments, and . • application of data based extreme value analysis procedures that are available in the statistics literature. The first component of the work provides opportunity to combine space filling sampling strategies (which have promise for reducing variance of estimation) with kriging based modeling in reliability studies-an opportunity that has not been explored in the existing literature. The second component of the work exploits the virtues of limiting behavior of extremes of sequence of random variables with Monte Carlo simulations of structural response-a strategy for reliability modeling that has not been explored in the existing literature. The hope here is that failure events with probabilities of the order of 10-5 or less could be investigated with relatively less number of Monte Carlo runs. The study also brings out the issues related to combining the above sources of existing knowledge with finite element modeling of engineering structures, thereby leading to newer tools for structural reliability analysis. The thesis is organized into four chapters. The first chapter provides a review of literature that covers methods of reliability analysis and also the background literature on design and analysis of computer experiments and extreme value analysis. The problem of reliability analysis of randomly parametered, linear (or) nonlinear structures subjected to static and (or) dynamic loads is considered in Chapter 2. A deterministic finite element model for the structure to analyze sample realization of the structure is assumed to be available. The reliability analysis is carried out within the framework of response surface methods, which involves the construction of surrogate models for performance functions to be employed in reliability calculations. These surrogate models serve as models of models, and hence termed as meta-models, for structural behavior in the neighborhood of design point. This construction, in the present study, has involved combining space filling optimal Latin hypercube sampling and kriging models. Illustrative examples on numerical prediction of reliability of a ten-bay truss and a W-seal in an aircraft structure are presented. Limited Monte Carlo simulations are used to validate the approximate procedures developed. The reliability of nonlinear vibrating systems under stochastic excitations is investigated in Chapter 3 using a two-stage Monte Carlo simulation strategy. Systems subjected to Gaussian random excitation are considered for the study. It is assumed that the probability distribution of the maximum response in the steady state belongs to the basin of attraction of one of the classical asymptotic extreme value distributions. The first stage of the solution strategy consists of an objective selection of the form of the extreme value distribution based on hypothesis tests, and the next involves the estimation of parameters of the relevant extreme value distribution. Both these steps are implemented using data from limited Monte Carlo simulations of the system response. The proposed procedure is illustrated with examples of linear/nonlinear single-degree and multi-degree of freedom systems driven by random excitations. The predictions from the proposed method are compared with results from large-scale Monte Carlo simulations and also with classical analytical results, when available, from theory of out-crossing statistics. The method is further extended to cover reliability analysis of nonlinear dynamical systems with randomly varying system parameters. Here the methods of meta-modeling developed in Chapter 2 are extended to develop response surface models for parameters of underlying extreme value distributions. Numerical examples presented cover a host of low-dimensional dynamical systems and also the analysis of a wind turbine structure subjected to turbulent wind loads and undergoing large amplitude oscillations. A summary of contributions made along with a few suggestions for further research is presented in Chapter 4.
4

Statistika extrémních hodnot / Statistics of extremes

Fusek, Michal January 2009 (has links)
The thesis deals with extreme value distributions. The theoretical part is devoted to the basics of extreme value theory and to the characterization of extreme value distributions. There is the limit theorem for distributions of the maximum formulated and characteristics of the extreme value distributions deduced. There are parameter estimates for Weibull, lognormal and exponential distributions inferred using method of maximum likelihood and method of moments. There is also the theory of censored samples described. The practical part is devoted to statistical analysis of rainfall.

Page generated in 0.028 seconds