• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of effective decoding techniques in network coding networks / Suné von Solms

Von Solms, Suné January 2013 (has links)
Random linear network coding is widely proposed as the solution for practical network coding applications due to the robustness to random packet loss, packet delays as well as network topology and capacity changes. In order to implement random linear network coding in practical scenarios where the encoding and decoding methods perform efficiently, the computational complex coding algorithms associated with random linear network coding must be overcome. This research contributes to the field of practical random linear network coding by presenting new, low complexity coding algorithms with low decoding delay. In this thesis we contribute to this research field by building on the current solutions available in the literature through the utilisation of familiar coding schemes combined with methods from other research areas, as well as developing innovative coding methods. We show that by transmitting source symbols in predetermined and constrained patterns from the source node, the causality of the random linear network coding network can be used to create structure at the receiver nodes. This structure enables us to introduce an innovative decoding scheme of low decoding delay. This decoding method also proves to be resilient to the effects of packet loss on the structure of the received packets. This decoding method shows a low decoding delay and resilience to packet erasures, that makes it an attractive option for use in multimedia multicasting. We show that fountain codes can be implemented in RLNC networks without changing the complete coding structure of RLNC networks. By implementing an adapted encoding algorithm at strategic intermediate nodes in the network, the receiver nodes can obtain encoded packets that approximate the degree distribution of encoded packets required for successful belief propagation decoding. Previous work done showed that the redundant packets generated by RLNC networks can be used for error detection at the receiver nodes. This error detection method can be implemented without implementing an outer code; thus, it does not require any additional network resources. We analyse this method and show that this method is only effective for single error detection, not correction. In this thesis the current body of knowledge and technology in practical random linear network coding is extended through the contribution of effective decoding techniques in practical network coding networks. We present both analytical and simulation results to show that the developed techniques can render low complexity coding algorithms with low decoding delay in RLNC networks. / Thesis (PhD (Computer Engineering))--North-West University, Potchefstroom Campus, 2013
2

Design of effective decoding techniques in network coding networks / Suné von Solms

Von Solms, Suné January 2013 (has links)
Random linear network coding is widely proposed as the solution for practical network coding applications due to the robustness to random packet loss, packet delays as well as network topology and capacity changes. In order to implement random linear network coding in practical scenarios where the encoding and decoding methods perform efficiently, the computational complex coding algorithms associated with random linear network coding must be overcome. This research contributes to the field of practical random linear network coding by presenting new, low complexity coding algorithms with low decoding delay. In this thesis we contribute to this research field by building on the current solutions available in the literature through the utilisation of familiar coding schemes combined with methods from other research areas, as well as developing innovative coding methods. We show that by transmitting source symbols in predetermined and constrained patterns from the source node, the causality of the random linear network coding network can be used to create structure at the receiver nodes. This structure enables us to introduce an innovative decoding scheme of low decoding delay. This decoding method also proves to be resilient to the effects of packet loss on the structure of the received packets. This decoding method shows a low decoding delay and resilience to packet erasures, that makes it an attractive option for use in multimedia multicasting. We show that fountain codes can be implemented in RLNC networks without changing the complete coding structure of RLNC networks. By implementing an adapted encoding algorithm at strategic intermediate nodes in the network, the receiver nodes can obtain encoded packets that approximate the degree distribution of encoded packets required for successful belief propagation decoding. Previous work done showed that the redundant packets generated by RLNC networks can be used for error detection at the receiver nodes. This error detection method can be implemented without implementing an outer code; thus, it does not require any additional network resources. We analyse this method and show that this method is only effective for single error detection, not correction. In this thesis the current body of knowledge and technology in practical random linear network coding is extended through the contribution of effective decoding techniques in practical network coding networks. We present both analytical and simulation results to show that the developed techniques can render low complexity coding algorithms with low decoding delay in RLNC networks. / Thesis (PhD (Computer Engineering))--North-West University, Potchefstroom Campus, 2013

Page generated in 0.0592 seconds