Spelling suggestions: "subject:"last atlantic"" "subject:"last tlantic""
1 |
Geophysical studies in the Hebrides Terrace seamount areaOmran, Mohamed Ahmed January 1990 (has links)
No description available.
|
2 |
Mitochondrial DNA hyperdiversity and population genetics in the periwinkle Melarhaphe neritoides (Mollusca: Gastropoda)Fourdrilis, Severine 28 June 2017 (has links)
This PhD thesis studies the evolution of the peculiar mitochondrial DNA (mtDNA) in the mollusc Melarhaphe neritoides. We measured mtDNA diversity and elucidated the evolutionary forces that shape the evolution of the organelle.The mtDNA in M. neritoides harbours a remarkable amount of polymorphism at selectively neutral nucleotide sites (π_syn = 6.8 %), called hyperdiversity when above the threshold of 5 %. We revealed that an elevated mutation rate (µ = 5.8 × 10-5 per site per year at the COI locus), which is 1000 fold higher than in other metazoans, is likely the primary force generating mtDNA hyperdiversity. Such mtDNA hyperdiversity may be more common across other phyla and more frequently linked to high µ values, than currently appreciated.Natural selection is a second force, which shapes mtDNA hyperdiversity. Positive selection influences the overall mtDNA polymorphism in the 16S, COI and Cytb genes, including synonymous sites at which mtDNA hyperdiversity is calculated. Therefore, synonymous sites in M. neritoides are not neutral but possibly positively selected. Strong purifying selection maintains a low non-synonymous polymorphism in the 13 protein-coding genes of the mitogenome, so that a very few changes in nucleotide sequence induce changes in amino acid sequence. The effective population size of this planktonic-dispersing species is surprisingly small in the North East Atlantic (Ne = 1303), likely biased by selection, and for this reason, Ne is a poor indicator of mtDNA hyperdiversity.Migration is a third force, which homogenises the gene pool of the species through high rates of gene flow, predominantly eastward, and results in high connectivity and panmixia over the entire North East Atlantic.Genetic drift, the fourth force, is not sufficient in M. neritoides to lower mtDNA diversity, and populations show no differentiation.This thesis also highlights an important pitfall. The use of hyperdiverse markers may easily lead to erroneous interpretations of differentiation statistics and connectivity pattern, due to the lack of shared haplotypes in datasets induced by a high µ. First, D_EST may reach a maximal value of 1 but is not indicative of differentiation in terms of fixation (D_EST = 1 ≠ φ_ST = 1), and only reflects differentiation in terms of lack of shared haplotypes. Second, the signal of gene flow is concealed in haplotype network bush-like pattern.Rapid evolution of mtDNA results in significant selection pressure for co-adaptation of the nuclear genome encoding mitochondrial proteins. The elevated µ underlying mtDNA hyperdiversity provides an interesting framework for better understanding how mutational dynamics and selection that drive mitonuclear coevolution contribute to speciation. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
3 |
Fishing on common grounds : the consequences of unregulated fisheries of North Sea Herring in the postwar period /Hrefna M. Karlsdóttir. January 2005 (has links)
Univ., Diss.--Göteborg, 2005. / Literaturverz. S. 210 - 221.
|
4 |
Basking shark movement ecology in the north-east AtlanticDoherty, Philip David January 2017 (has links)
Large marine vertebrate species can exhibit vast movements, both horizontally and vertically, which challenges our ability to observe their behaviours at extended time-scales. There is a growing need to understand the intra- and inter-annual movements of mobile marine species of conservation concern in order to develop effective management strategies. The basking shark (Cetorhinus maximus) is the world's second largest fish species, however, a comprehensive understanding of this species’ ecology, biology and spatial behaviour in the north-east Atlantic is currently lacking. This thesis seeks to investigate the movement ecology of basking sharks using a suite of technologies to integrate biologging, biotelemetry, remotely sensed data, and ecological modelling techniques. I use satellite telemetry data from basking sharks tracked in 2012, 2013 and 2014 to quantify movements in coastal waters off the west coast of Scotland within the Sea of the Hebrides proposed MPA. Sharks exhibited seasonal residency to the proposed MPA, with three long-term tracked basking sharks demonstrating inter-annual site fidelity, returning to the same coastal waters in the year following tag deployment (Chapter 2). I reveal that sharks tracked into winter months exhibit one of three migration strategies spanning nine geo-political zones and the High Seas, demonstrating the need for multi-national cooperation in the management of this species across its range (Chapter 3). I examine the vertical space-use of basking sharks to improve an understanding of the processes that influence movements in all dimensions. Basking sharks exhibit seasonality in depth-use, conduct deep dives to over 1000 m, and alter their depth-use behaviour in order to remain within thermal niche of between 8 and 16 oC (Chapter 4). Finally, I combine contemporaneous data recorded by deployed satellite tags with remotely sensed environmental data to employ novel ecological modelling techniques to predict suitable habitat for basking sharks throughout the Atlantic Ocean (Chapter 5).
|
5 |
Impact du changement climatique sur la distribution des populations de poissons. Approche par SIG, modèles et scénarios d'évolution du climat / Climate change impacts on fish species distribution. Approach using GIS, models and climate evolution scenarioKaimuddin, Awaluddin Halirin 28 June 2016 (has links)
La compréhension des interactions liant la répartition des espèces, la biodiversité, les habitats marins et le changement climatique est nécessaire voire fondamentale pour la mise en oeuvre d’une gestion efficace de la conservation, par exemple la mise en place d’aires marines protégées. Dans cette étude, nous avons travaillé sur l’évolution de richesse de 89 espèces de poissons notées «rares» ou «exotiques» (observées en dehors de leur aire de répartition connue) lié au changement climatique. Nous avons modélisé et prédit leur distribution saisonnière par le modèle SIG en fonction de leurs niches écologiques (déterminée dans cette étude). En superposant tous les modèles en fonction du temps, cette approche permet d’identifier des zones d’occupation préférentielle de forte biodiversité (hotspots). La méthode offre une alternative pour mesurer la richesse d’espèces de façon saisonnière dans des zones peu connues, et de suivre leur mouvement au cours de temps, puis avoir information de base sur l’efficacité de positionnement des aires marines protégés liées à ces zones hotspots. La zone d’étude s’est située dans trois grands écosystèmes marins : le courant des Canaries, le plateau sud de l’Atlantique Européen et les mers celtiques. La région centrale est une zone de transition (entre les eaux tropicales et tempérés) connue pour sa sensibilité aux effets du changement climatique. De 1982 à 2012, la SST augmente constamment au fil du temps, avec des tendances et des magnitudes qui varient selon l’écosystème. Une augmentation du nombre d'espèces dans un écosystème dans une période a été généralement suivie par une tendance à la baisse ou à la hausse dans des écosystèmes adjacents. Les niches écologiques des espèces étudiées ont été estimées par l’extraction des valeurs environnementales à l’échelle mondiale au point d'occurrence au moment de l'observation. Les résultats de niches sont cohérents avec ceux obtenus à partir d’études observationnelles ou expérimentales. La flexibilité du modèle SIG nous a permis de suivre l'évolution saisonnière de distribution des espèces au fil du temps. En général, les espèces montrent une tendance à élargir leur distribution vers le nord, montrant l'effet du réchauffement de l'océan sur la distribution des poissons marins. L’approche de modèle peut être utilisée pour modéliser la distribution des espèces moins connues, ou dans des zones où les données d’occurrences sont peu nombreuses, ainsi que pour prédire le modèle de distribution future. L'analyse spatiale de la superficie des AMPs (Aires Marines Protégées) par pays appartenant à la zone d'étude, montre que le Royaume-Uni puis la France possèdent le plus grand nombre d'AMP ainsi que les superficies totales protégées les plus importantes. La fréquence à laquelle les AMPs (Aires Marines Protégées) sont touchées par les zones de hotspots est fortement influencée par les variations de l’environnement, les zones favorables évoluant alors au fil des saisons. Ainsi, il est important de prendre en compte les variations saisonnières pour la création des AMPs afin de préserver les capacités adaptative des espèces soumises au changement global. / Understanding connectivities among species distributions, biodiversity, marine habitats and climate change is necessary for the design of an effective conservation management, such as in the implementation of marine protected area (MPA). In this study, we observed the richness of 89 "rare" or "exotic" fish species (observed outside their known distribution range) related to climate change. We modeled and predicted their seasonal distributions according to the species ecological niches (determined in this study) using the GIS model. Superposing the models of all species using GIS, we determined the preferential zones or zones of high biodiversity (hotspots) over time. The GIS approach offers an alternative to measure seasonal species richness in poor-data areas. This approach allowed also species track movement over time. This information could be then used to measure the effectiveness of MPA positioning related to the hotspot areas. Our study area covers a wide latitudinal range of the Eastern Atlantic waters, from the warm tropical/subtropical waters to the temperate waters. This area is located in three large marine ecosystems: the Canary current, the South European Atlantic Shelf and the Celtic Seas. The transitional zone in the central region has well known for its sensitivity to the detection of climate change. From 1982 to 2012, the SST in all of studied ecosystems has increased consistently over time, with magnitude and trend varied among ecosystems. The change of number of species in each decadal period differed among ecosystems. Increasing number of species in an ecosystem was generally followed by decreasing trend in adjacent ecosystems. Species ecological niches were obtained by extracting the environmental values in the location of species occurrence at the time of observation. The environmental data and the occurrence records used were at global scale, and the methods yields coherent results with the results obtained from observational studies. The flexibility of GIS Model used in this study allowed us to follow the evolution of species seasonal distribution over time. Generally, most of the studied species showed a northbound trend in their distribution. These northbound tendencies were more evident in the middle region, confirming the effect of global warming in shifting marine species distribution. This approach provides an alternative of measuring seasonal richness of poor-known species and/or modeling in poor-data areas. The results present a complete picture of predictive number of species in an area over time. MPAs superficial analysis by country (countries lying in the study area) showed that UK has the highest number of MPA and the largest protected areas, following by France and Mauritania. Frequencies of the MPAs touched by the hotspot were strongly influenced by seasonal variations. Thus, considering seasonal variations in a conservation effort could preserve species adaptive variation under environmental changes. Overall, our works provide several alternative methods for species distribution studies and for studies poor-known species in data-poor area. The results provide evidences of ocean warming effect in shifting marine fish distribution.
|
Page generated in 0.0471 seconds