Spelling suggestions: "subject:"last texas basin"" "subject:"last texas yasin""
1 |
Development of a Procedure to Evaluate Groundwater Quality and Potential Sources of Contamination in the East Texas BasinAlderman, John H. 05 1900 (has links)
This study contributes a procedure, based on data analysis and geostatistical methods, to evaluate the distribution of chemical ratios and differentiate natural and anthropogenic contaminant sources of groundwater quality in the East Texas Basin. Four aquifers were studied, Sparta, Queen City, Carrizo and Wilcox. In this study, Carrizo- Wilcox is considered as one aquifer, and Sparta-Queen City as another. These aquifers were divided into depth categories, 0-150 feet for Sparta-Queen City and 300-600 feet and 600-900 feet for Carrizo-Wilcox in order to identify individual sources of contamination. Natural sources include aquifer mineral make up, salt domes and lignite beds. Major anthropogenic sources include lignite and salt dome mining and oil-gas production. Chemical ratios selected were Na/Cl, Ca/Cl, Mg/Cl, SO4/Cl, (Na+Cl)/TDS, SO4/Ca and (Ca+Mg)/(Na+K). Ratio distributions and their relationships were examined to evaluate physical-chemical processes occurring in the study area. Potential contaminant sources were used to divide the Basin into three areas: Area 1 to the east, Area 2 in the west and Area 3 in the center. Bivariate analysis was used to uncover differences between the areas. The waters in Area 1 are potentially impacted primarily from oil field waters. Sources present in Area 2 include lignite beds and oil field operations. Area 3 is the cap rock of salt domes that can contain gypsum and anhydrite. Based on the exploratory data analysis (Na+Cl)/TDS, (Ca+Mg)/(Na+K), and SO4/Ca ratios were chosen for geostatistical analysis. Chemical ratios that provided indications of cation exchange, salt domes and oil fields were (Na+Cl)/TDS, (Ca+Mg)/(Na+K) and SO4/Ca. In the Sparta-Queen City 150 zone the procedure did not provide a good method for differentiating between contaminant sources. However, the procedure was effective to indicate impacted ground water in the Carrizo-Wilcox 600 and 900 foot zones.
|
2 |
Integrated sequence stratigraphy, depositional environments, diagenesis, and reservoir characterization of the Cotton Valley Sandstones (Jurassic), East Texas Basin, USAElshayeb, Tarek Abu Serie 28 August 2008 (has links)
Not available / text
|
3 |
Evaluation of Travis Peak gas reservoirs, west margin of the East Texas BasinLi, Yamin 15 May 2009 (has links)
Gas production from low-permeability (tight) gas sandstones is increasingly important in
the USA as conventional gas reservoirs are being depleted, and its importance will
increase worldwide in future decades. Travis Peak tight sandstones have produced gas
since the 1940s. In this study, well log, 2D seismic, core, and production data were used
to evaluate the geologic setting and reservoir characteristics of the Travis Peak
formation. The primary objective was to assess the potential for basinward extension of
Travis Peak gas production along the west margin of the East Texas Basin.
Along the west margin of the East Texas Basin, southeast-trending Travis Peak
sandstones belts were deposited by the Ancestral Red River fluvial-deltaic system. The
sandstones are fine-grained, moderately well sorted, subangular to subrounded, quartz
arenites and subarkoses; reservoir quality decreases with depth, primarily due to
diagenetic quartz overgrowths. Evaluation of drilling mud densities suggests that strata
deeper than 12,500 ft may be overpressured. Assessment of the geothermal gradient
(1.6 °F/100 ft) indicates that overpressure may be relict, resulting from hydrocarbon
generation by Smackover and Bossier formation potential source rocks. In the study area, Travis Peak cumulative gas production was 1.43 trillion cubic feet
from January 1, 1961, through December 31, 2005. Mean daily gas production from 923
wells was 925,000 cubic ft/well/day, during the best year of production. The number of
Travis Peak gas wells in “high-cost” (tight sandstone) fields increased from 18 in the
decade 1966-75 to 333 in the decade 1996-2005, when high-cost fields accounted for
33.2% of the Travis Peak gas production. However, 2005 gas production from high cost
fields accounted for 63.2% of the Travis Peak total production, indicating that
production from high-cost gas wells has increased markedly.
Along the west margin of the East Texas Basin, hydrocarbon occurs in structural,
stratigraphic, and combination traps associated with salt deformation. Downdip
extension of Travis Peak production will depend on the (1) burial history and diagenesis,
(2) reservoir sedimentary facies, and (3) structural setting. Potential Travis Peak
hydrocarbon plays include: updip pinch-outs of sandstones; sandstone pinch-outs at
margins of salt-withdrawal basins; domal traps above salt structures; and deepwater
sands.
|
Page generated in 0.0376 seconds