• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude de la formation de colmatages minéraux sur les membranes échangeuses d'ions en cours d'électrodialyse de solutions salines modèles : mécanismes de formation et contrôle par des ratios de champs électriques pulsés optimisés

Cifuentes-Araya, Nicolás 18 April 2018 (has links)
L'Électrodialyse (ED) est un procédé en plein essor qui trouve actuellement de nombreuses applications dans plusieurs secteurs de l'agroalimentaire. Cependant, le colmatage des membranes et la consommation énergétique (CE) élevée associée, doivent encore être minimisés pour permettre une intensification des procédés d'ED en termes de taux de déminéralisation (TD) et de dépenses d'opération. Un des problèmes les plus communs des procédés électromembranaires est le colmatage des membranes par des sels minéraux présents dans des solutions physiologiques complexes telles que les effluents laitiers et l'eau de mer. Les tentatives récentes d'induire la formation de colmatage, et ainsi de pouvoir étudier ce problème, ont été centrées sur les traitements d'électrodialyse de solutions modèles ayant des ratios Mg /Ca élevés, sous densités de courant élevées et en utilisant des solutions de concentrât alcalinisées. De plus, une étude récente a montré que l'application de champs électriques puisés (CEPs) de basse fréquence, avec l'utilisation d'une solution de concentrât acidifiée, avait un impact positif sur l'optimisation des procédés et sur la réduction du colmatage des membranes échangeuses de cations (MEC). Néanmoins, la durée excessive du procédé, due à la longue période de pause appliquée, n'a pas permis de réduire la consommation d'énergie et de contrôler complètement le colmatage de la MEC. Cette étude a cependant montré que la fréquence de CEP utilisé peut être optimisée en ajustant les ratios pulse/pause (Ton/Toff) appliqués en cours de traitements d'électrodialyse effectués sous des conditions colmatantes. Par conséquent, les objectifs de ce travail de recherche ont été : 1) d'évaluer deux ratios de courant en CEP (ratio 1 (Ton/Toff = 10 s/10 s) et 0.3 (Ton/Toff = 10 s/33.3 s)) sur la performance du procédé et sur l'évolution du colmatage minéral sur les membranes échangeuses d'ions, au cours de traitements consécutifs d'ED et leur comparaison avec des traitements en courant continu, 2) d'identifier la nature et l'évolution des couches de colmatage sur les MECs et sur les membranes échangeuses d'anions (MEAs) 3) d'étudier et expliquer les mécanismes de précipitation et leurs évolutions au cours de traitements d'ED consécutifs, et 4) d'ajuster les régimes de CEPs appliqués pour optimiser le contrôle du colmatage et pour améliorer Ta performance du procédé. Cet ajustement sera fait en considérant les résultats et les phénomènes observés durant la réalisation du premier objectif. Les résultats obtenus ont montré qu'un régime en courant continu conduit à une formation importante de colmatage sur la MEC alors que les traitements effectués sous CEPs (ratio 1 (Ton/Toff = 10 s/10 s) et 0.3 (Ton/Toff = 10 s/33.3 s)) ont intensifié les taux de déminéralisation (TD) tout en réduisant la formation du colmatage et la consommation énergétique. Le CEP ratio 1 a conduit à l'atteinte de taux de déminéralisation plus rapides de la solution traitée et à une consommation énergétique réduite durant les trois traitements consécutifs; cette efficacité serait liée à la pulsation de courant plus répétitive effectuée sur les interfaces des membranes. De plus, l'inspection des surfaces des membranes par le biais des analyses de diffraction à rayons X et microanalyse X a révélé l'existence de colmatages cristallins multicouches survenant sur les deux cotés de la MEC et son retardement par l'application de CEPs. En parallèle, le colmatage observé sur la MEA a été relié à la performance globale du système; ce dernier était supprimé par l'application d'un régime en courant continu grâce au maintien d'un phénomène de barrières de protons produit par la dissociation de molécules d'eau aux interfaces des membranes. Ainsi, lors de l'application d'une longue période de pause (33.3 secondes) une couche de bruche est apparue sur le coté diluât de la MEA à cause de l'absence à la surface de la membrane d'une barrière de protons constante. Selon les premiers résultats observés et les phénomènes liés, une gamme de ratios de CEP a été appliquée à fin d'optimiser les conditions de CEP. Cela a permis d'observer que les ratios de CEP les plus élevés (Ton/Toff = 10 s/5 s et Ton/Toff = 5 s/5 s) permettaient les plus importantes optimisations en relation avec leurs plus hautes fréquences de puise. Ces traitements ont augmenté considérablement les TDs (58.48 et 59.64 %, respectivement, pour Ton/Toff = 10 s/5 s et pour Ton/Toff = 5 s/5 s) en contrôlant complètement la croissance du colmatage minéral sur le coté diluât de la MEC. Les périodes de pause plus courtes ont ainsi permis de conférer une pulsation de courant plus répétitive à l'interface des MECs. Ces périodes de pauses courtes ont permis une génération de protons plus constante ce qui a facilité la neutralisation du pH sur le coté concentrât de la MEC. Ces résultats ont montré en détail les mécanismes de formation du colmatage minéral sur les membranes échangeuses d'ions au cours d'électrodialyse d'une solution modèle ayant un ratio Mg +/Ca2+ élevé (2/5). Le contrôle du colmatage a été efficace grâce à l'action constante des barrières de protons établies par l'utilisation de ratios de CEP optimisés.
2

Ecological rehabilitation of a seawater contaminated peatland : the case of Pokesudie Bog, New Brunswick

Breathnach, Cillian 16 April 2018 (has links)
Les tourbières exploitées et occasionnellement inondées par de l'eau de mer présentent un ensemble de facteurs qui compliquent leur restauration ou leurs réhabilitation, incluant la toxicité du sel, le soulèvement gélival, les inondations par les eaux pluviales et, peut être le facteur le plus difficile à gérer, le manque de graines adaptées. Cette étude a eu pour objectif de tester différentes techniques de réhabilitation sur une tourbière exploitée et inondée par l'eau de mer, située sur l'île de Pokesudie au Nouveau-Brunswick. Lors d'une tempête en janvier 2000, une partie de la zone d'exploitation de cette tourbière a été inondée par de l'eau de mer. En dépit des efforts de mitigation, la tourbe est restée trop salée pour pouvoir être utilisée en horticulture. Des recherches ont alors été menées pour trouver des techniques de réhabilitation. Ces techniques de restauration visent à stabiliser le substrat par le biais du développement d'un couvert végétal important. Pour cela des espèces typiques des marais salés ont été utilisées. Deux techniques d'introduction ont été testées : le transfert par carottes de densités différentes et le transfert de foin. L'utilisation de fertilisant a également été testée. Le recouvrement végétal le plus important a été obtenu en utilisant le transfert de foin récolté dans des zones dominées par Juncus bufonius et dans des communautés végétales des marais salés dominées par Spartina pectinata. L'utilisation de fertilisant n'a pas accéléré le développement du recouvrement végétal. Cette étude pourrait être intéressante pour d'autres projets de réhabilitation des tourbières côtieres.
3

Potentiel de valorisation des eaux blanches en production fromagère : enjeux liés à la qualité physico-chimique et microbiologique de l'effluent et aspects technico-économiques à considérer

Alalam, Sabine 30 August 2022 (has links)
Les eaux blanches issues du rinçage à l'eau des équipements utilisés en industries laitières présentent un potentiel de valorisation en lien avec leur teneur en solides du lait permettant ainsi de diminuer les impacts environnementaux et économiques liés à la gestion des effluents laitiers. Plus spécifiquement, les eaux blanches, utilisées dans le cadre de ce projet ont été générées à la suite du rinçage d'un pasteurisateur, avaient une composition similaire à celle du lait dilué. De ce fait, dans une optique de récupération et de réutilisation de ces eaux blanches, l'osmose inverse (OI) a été choisie comme technologie permettant de produire un concentré de solides du lait réutilisable en production fromagère (rétentat) et de l'eau de procédé (perméat). Ainsi, les différents lots d'eaux blanches provenant de deux usines de transformation du lait(usines A et B) ont été concentrés par OI à 50 °C. Ces eaux blanches ont tout d'abord été caractérisées pour leur composition physico-chimique et microbiologique. Par la suite, l'évolution de la charge et des genres bactériens composant les eaux blanches et les concentrés, a été déterminée par approche méta-taxinomique à la suite des étapes de concentration et de recirculation des eaux blanches par OI à 50 °C pendant 20 h. Finalement, le potentiel de valorisation des eaux blanches a été évalué lors de la production de fromages modèles pour lesquels différentes proportions de concentrés d'eaux blanches intégrées dans le mélange de lait fromager ont été étudiés. De même, l'impact économique de la mise en œuvre d'un système d'OI dans une usine laitière permettant de régénérer des concentrés d'eaux blanches a été estimé. Les résultats ont montré que le profil bactérien des eaux blanches était différent en fonction de l'environnement de l'usine et des séquences de nettoyage en place (CIP) mises en place. Plus spécifiquement, les bactéries psychrotrophes étaient dominantes dans les eaux blanches générées par l'usine A et les thermophiles dans celles générées par l'usine B. La composition microbiologique des eaux blanches limitait leur réutilisation après 10 heures pour l'usine A et 5 heures pour l'usine B de recirculation par OI à 50 °C, afin d'éviter la croissance de bactéries sporulées thermorésistantes. En parallèle, nous avons démontré que l'utilisation d'eaux blanches concentrées et pasteurisées en production fromagère augmente le rendement et l'humidité des fromages modèles. Cependant, la substitution de plus de 50 % de la quantité de lait de fromagerie par des concentrés d'eaux blanches pasteurisés a ralentie la cinétique de coagulation de caillés. L'humidité excessive des fromages élaborés à partir de concentrés d'eaux blanches, a été corrélée à une modification de l'équilibre soluble-colloïdal des minéraux et des protéines, notamment ceux du calcium et des caséines. Finalement, et selon l'étude économique réalisée, une usine laitière devra générer un minimum de 200 m³ d'eaux blanches par jour contenant 0,5 % de solides totaux pour que l'investissement lié à l'achat et à l'utilisation d'un système d'OI pour la concentration d'eaux blanches destinée à la fabrication fromagère soit rentabilisé au bout de six mois. / White wastewaters (WW) generated after the first hydraulic flush of dairy equipment have the potential to be use in dairy processing for the valorization of their milk solids content which could have environmental and economic benefits for dairy effluent management. More specifically, WWs used in this project were generated after the rinsing of pasteurizers and had a composition similar to that of diluted milk. Therefore, to recover and reuse these WW, reverse osmosis (RO) was chosen as a suitable technology to generate concentrates of milk solids (retentate) for cheese production and process water (permeate). Thus, different batches of WW generated from two dairy processing plants (plants A and B) were concentrated by RO at 50°C. These WW were first characterized for their physicochemical and microbiological compositions. Subsequently, the evolution of the bacterial load and genera in these WW was determined by metabarcoding after the concentration and recirculation steps by RO for 20h. Finally, the potential for the valorization of these WW was evaluated by the production of model cheeses for which different proportions of WW concentrates were added to the cheese milk mixture. The economic impact of implementing a RO system in a dairy plant to regenerate WW concentrates was also estimated. The results showed that the bacterial profile of WW was different depending on the bacterial environment of the plant and the cleaning in place (CIP) applied procedure. More specifically, psychrotrophic bacteria were dominant in WW generated by plant A and thermophilic bacteria in those generated by plant B. The bacterial profile of these WW limited their reuse after 10 hours for the plant A and 5 hours for the plant B of recirculation at 50ᵒC by RO, to avoid the growth of thermoresistant spore-forming bacteria. In parallel, we demonstrated that the use of concentrated and pasteurized WW in the production of model cheese increases their yield and moisture compared to control cheeses. However, the substitution of more than 50% of the quantity of cheese milk with pasteurized WW concentrates decreased the coagulation kinetics of curds. The excessive humidity of the cheeses generated from WW concentrates was correlated with modifying of the soluble colloidal balance of minerals and proteins, especially of calcium and caseins. Finally, and according to the economic study carried out, a dairy plant will have to generate a minimum of 200m³ of white water per day containing 0.5% of total solids so that the investment related to the purchase and use of an RO system for the concentration of white water for cheese production will be profitable within six months.
4

Potentiel de valorisation des eaux blanches en production fromagère : enjeux liés à la qualité physico-chimique et microbiologique de l’effluent et aspects technico-économiques à considérer

Alalam, Sabine 30 August 2022 (has links)
Les eaux blanches issues du rinçage à l’eau des équipements utilisés en industries laitières présentent un potentiel de valorisation en lien avec leur teneur en solides du lait permettant ainsi de diminuer les impacts environnementaux et économiques liés à la gestion des effluents laitiers. Plus spécifiquement, les eaux blanches, utilisées dans le cadre de ce projet ont été générées à la suite du rinçage d’un pasteurisateur, avaient une composition similaire à celle du lait dilué. De ce fait, dans une optique de récupération et de réutilisation de ces eaux blanches, l’osmose inverse (OI) a été choisie comme technologie permettant de produire un concentré de solides du lait réutilisable en production fromagère (rétentat) et de l’eau de procédé (perméat). Ainsi, les différents lots d’eaux blanches provenant de deux usines de transformation du lait(usines A et B) ont été concentrés par OI à 50 °C. Ces eaux blanches ont tout d’abord été caractérisées pour leur composition physico-chimique et microbiologique. Par la suite, l’évolution de la charge et des genres bactériens composant les eaux blanches et les concentrés, a été déterminée par approche méta-taxinomique à la suite des étapes de concentration et de recirculation des eaux blanches par OI à 50 °C pendant 20 h. Finalement, le potentiel de valorisation des eaux blanches a été évalué lors de la production de fromages modèles pour lesquels différentes proportions de concentrés d’eaux blanches intégrées dans le mélange de lait fromager ont été étudiés. De même, l'impact économique de la mise en œuvre d'un système d'OI dans une usine laitière permettant de régénérer des concentrés d’eaux blanches a été estimé. Les résultats ont montré que le profil bactérien des eaux blanches était différent en fonction de l’environnement de l’usine et des séquences de nettoyage en place (CIP) mises en place. Plus spécifiquement, les bactéries psychrotrophes étaient dominantes dans les eaux blanches générées par l’usine A et les thermophiles dans celles générées par l’usine B. La composition microbiologique des eaux blanches limitait leur réutilisation après 10 heures pour l'usine Aet 5 heures pour l'usine B de recirculation par OI à 50 °C, afin d'éviter la croissance de bactéries sporulées thermorésistantes. En parallèle, nous avons démontré que l'utilisation d'eaux blanches concentrées et pasteurisées en production fromagère augmente le rendement et l'humidité des fromages modèles. Cependant, la substitution de plus de 50 % de la quantité de lait de fromagerie par des concentrés d'eaux blanches pasteurisés a ralentie la cinétique de coagulation de caillés. L'humidité excessive des fromages élaborés à partir de concentrés d'eaux blanches, a été corrélée à une modification de l'équilibre soluble-colloïdal des minéraux et des protéines, notamment ceux du calcium et des caséines. Finalement, et selon l’étude économique réalisée, une usine laitière devra générer un minimum de 200 m³ d'eaux blanches par jour contenant 0,5 % de solides totaux pour que l’investissement lié à l’achat et à l’utilisation d’un système d’OI pour la concentration d’eaux blanches destinée à la fabrication fromagère soit rentabilisé au bout de six mois. / White wastewaters (WW) generated after the first hydraulic flush of dairy equipment have the potential to be use in dairy processing for the valorization of their milk solids content which could have environmental and economic benefits for dairy effluent management. More specifically, WWs used in this project were generated after the rinsing of pasteurizers and had a composition similar to that of diluted milk. Therefore, to recover and reuse these WW,reverse osmosis (RO) was chosen as a suitable technology to generate concentrates of milk solids (retentate) for cheese production and process water (permeate).Thus, different batches of WW generated from two dairy processing plants (plants A and B) were concentrated by RO at 50°C. These WW were first characterized for their physicochemical and microbiological compositions. Subsequently, the evolution of the bacterial load and genera in these WW was determined by metabarcoding after the concentration and recirculation steps by RO for 20h. Finally, the potential for the valorization of these WW was evaluated by the production of model cheeses for which different proportions of WW concentrates were added to the cheese milk mixture. The economic impact of implementing a RO system in a dairy plant to regenerate WW concentrates was also estimated. The results showed that the bacterial profile of WW was different depending on the bacterial environment of the plant and the cleaning in place (CIP) applied procedure. More specifically, psychrotrophic bacteria were dominant in WW generated by plant A and thermophilic bacteria in those generated by plant B. The bacterial profile of these WW limited their reuse after 10 hours for the plant A and 5 hours for the plant B of recirculation at 50ᵒC by RO, to avoid the growth of thermoresistant spore-forming bacteria. In parallel, we demonstrated that the use of concentrated and pasteurized WW in the production of model cheese increases their yield and moisture compared to control cheeses. However, the substitution of more than 50% of the quantity of cheese milk with pasteurized WW concentrates decreased the coagulation kinetics of curds. The excessive humidity of the cheeses generated from WW concentrates was correlated with modifying of the soluble colloidal balance of minerals and proteins, especially of calcium and caseins. Finally, and according to the economic study carried out, a dairy plant will have to generate a minimum of 200m³ of white water per day containing 0.5% of total solids so that the investment related to the purchase and use of an RO system for the concentration of white water for cheese production will be profitable within six months.

Page generated in 0.1215 seconds