• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simula??o computacional do escoamento em bombas de cavidades progressivas

Pessoa, Paulo Alison Sousa 15 December 2009 (has links)
Made available in DSpace on 2014-12-17T14:57:56Z (GMT). No. of bitstreams: 1 PauloASP.pdf: 2445269 bytes, checksum: 158c07b839a3cc9c6803734bb383eed0 (MD5) Previous issue date: 2009-12-15 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The use of Progressing Cavity Pumps (PCPs) in artificial lift applications in low deep wells is becoming more common in the oil industry, mainly, due to its ability to pump heavy oils, produce oil with large concentrations of sand, besides present high efficiency when compared to other artificial lift methods. Although this system has been widely used as an oil lift method, few investigations about its hydrodynamic behavior are presented, either experimental or numeric. Therefore, in order to increase the knowledge about the BCP operational behavior, this work presents a novel computational model for the 3-D transient flow in progressing cavity pumps, which includes the relative motion between rotor and stator, using an element based finite volume method. The model developed is able to accurately predict the volumetric efficiency and viscous looses as well as to provide detailed information of pressure and velocity fields inside the pump. In order to predict PCP performance for low viscosity fluids, advanced turbulence models were used to treat, accurately, the turbulent effects on the flow, which allowed for obtaining results consistent with experimental values encountered in literature. In addition to the 3D computational model, a simplified model was developed, based on mass balance within cavities and on simplification on the momentum equations for fully developed flow along the seal region between cavities. This simplified model, based on previous approaches encountered in literature, has the ability to predict flow rate for a given differential pressure, presenting exactness and low CPU requirements, becoming an engineering tool for quick calculations and providing adequate results, almost real-time time. The results presented in this work consider a rigid stator PCP and the models developed were validated against experimental results from open literature. The results for the 3-D model showed to be sensitive to the mesh size, such that a numerical mesh refinement study is also presented. Regarding to the simplified model, some improvements were introduced in the calculation of the friction factor, allowing the application fo the model for low viscosity fluids, which was unsuccessful in models using similar approaches, presented in previous works / O uso de bombas de cavidades progressivas (BCP) para eleva??o artificial de petr?leo em po?os de baixa a m?dia profundidade est? se tornando mais comum na ind?stria do petr?leo devido, dentre outras caracter?sticas, ? sua habilidade de bombear ?leos pesados, produzir ?leo com grandes concentra??es de part?culas s?lidas, e tolerar grandes fra??es de g?s livre. Al?m disso, apresenta alta efici?ncia, quando comparado a outros sistemas de eleva??o artificial. Apesar de este sistema ser bastante utilizado na eleva??o de ?leo, poucas investiga??es acerca do seu comportamento hidrodin?mico podem ser encontradas na literatura. Desta forma, devido ? necessidade de obter um maior dom?nio do comportamento operacional da BCP, este trabalho apresenta um novo modelo computacional para escoamento 3-D transiente em bombas de cavidades progressivas, utilizando o m?todo dos volumes finitos baseado em elementos, no qual se inclui o movimento relativo entre o rotor e o estator. O modelo desenvolvido ? capaz de predizer com exatid?o par?metros operacionais, como efici?ncia volum?trica e perdas viscosas, assim como fornecer informa??es detalhadas dos campos de press?o e velocidade no interior da bomba. Para tornar poss?vel o estudo com BCP s bombeando fluidos de baixa viscosidade, foram utilizados modelos de turbul?ncia avan?ados para tratar adequadamente os efeitos turbulentos no escoamento, os quais permitiram obter informa??es coerentes com a literatura do comportamento da BCP em resultados experimentais. Al?m do modelo tridimensional, este trabalho apresenta um modelo simplificado baseado em um balan?o de massa entre as cavidades e na simplifica??o das equa??es do movimento para escoamento completamente desenvolvido ao longo das linhas de selo entre as cavidades. O modelo simplificado, baseado em abordagens j? utilizadas para este tipo de bomba, tem capacidade de predizer valores de vaz?o para um dado diferencial de press?o, apresentando exatid?o e requerendo pouco trabalho de CPU, tornando-se uma ferramenta de engenharia de uso f?cil, permitindo respostas num?ricas aproximadas em tempo-real. Os resultados apresentados neste trabalho consideraram uma BCP de estator r?gido e os modelos apresentados foram validados com resultados experimentais da literatura. Os resultados para o modelo tridimensional mostraram-se sens?veis ao tamanho da malha, de maneira que um estudo de refinamento de malha ? apresentado. J? no modelo simplificado foram introduzidos alguns melhoramentos no c?lculo do fator de atrito permitindo a aplica??o para fluidos de baixa viscosidade, o que n?o era poss?vel em modelos similares apresentados em trabalhos anteriores
2

Implicit and semi-implicit techniques for the compositional petroleum reservoir simulation based on volume balance / MÃtodos implÃcitos e semi-implÃcitos para a simulaÃÃo composicional de reservatÃrios de petrÃleo baseado em balanÃo de volume

Bruno Ramon Batista Fernandes 26 June 2014 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / In reservoir simulation, the compositional model is one of the most used models for enhanced oil recovery. However, the physical model involves a large number of equations with a very complex interplay between equations. The model is basically composed of balance equations and equilibrium constraints. The way these equations are solved, the degree of implicitness, the selection of the primary equations, primary and secondary variables have a great impact on the computation time. In order to verify these effects, this work proposes the implementation and comparison of some implicit and semi-implicit methods. The following formulations are tested: an IMPEC (implicit pressure, explicit composition), an IMPSAT (implicit pressure and saturations), and two fully implicit formulations, in which one these formulations is being proposed in this work. However, the literature reports some intrinsic inconsistencies of the IMPSAT formulation mentioned. In order to verify it, an iterative IMPSAT is implemented to check the quality of the IMPSAT method previously mentioned. The finite volume method is used to discretize the formulations using Cartesian grids and unstructured grids in conjunction with the EbFVM (Element based finite volume method) for 2D and 3D reservoirs. The implementations have been performed in the UTCOMP simulator from the University of Texas at Austin. The results of several case studies are compared in terms of volumetric oil and gas rates and the total CPU time. It was verified that the FI approaches increase their performance, when compared to the other approaches, as the grid is refined. A good performance was observed for the IMPSAT approach when compared to the IMPEC formulation. However, as more complex stencils are used, the IMPSAT performance reduces. / Em simulaÃÃo de reservatÃrios, o modelo composicional à um dos mais usados para a recuperaÃÃo avanÃada de petrÃleo. Entretanto, o modelo fÃsico envolve um grande nÃmero de equaÃÃes com uma complexa interelaÃÃo entre elas. O modelo à basicamente composto por equaÃÃes de balanÃo e restriÃÃes de equilÃbrio. A forma como essas equaÃÃes sÃo resolvidas como, o grau de implicitude, a seleÃÃo das equaÃÃes primÃrias, variÃveis primÃrias e secundÃrias tem um grande impacto no tempo de computaÃÃo. Com o intuito de verificar esse efeito, esse trabalho propÃe a implementaÃÃo e comparaÃÃo de alguns mÃtodos implÃcitos e semi-implÃcitos. As seguintes formulaÃÃes sÃo testadas: uma IMPEC (implicit pressure, explicit composition), uma IMPSAT (implicit pressure and saturations), e duas formulaÃÃes totalmente implicitas, das quais uma destas està sendo proposta neste trabalho. Entretanto, a literatura relata algumas inconsistÃncias intrÃnsecas da formulaÃÃo IMPSAT mencionada. Para verificar isso, um IMPSAT iterativo foi implementado para verificar a qualidade nos resultados do mÃtodo IMPSAT prÃviamente mencionado. O mÃtodo de volumes finitos à usado para discretizar as formulaÃÃes usando malhas Cartesianas e nÃo-estruturadas em conjunto com o EbFVM (Element based finite volume method) para reservatÃrios 2D e 3D. A implementaÃÃo foi realizada no simulador UTCOMP da Univeristy of Texas at Austin. Os resultados de diversos casos de estudo sÃo comparados em termos das vazÃes volumÃtricas de Ãleo e gÃs e do tempo total de CPU. Verificou-se que as abordagens totalmente implÃcitas melhoram sua performance, quando comparado com os demais mÃtodos, a medidaque a malha à refinada. Um bom desempenho foi observado para as formulaÃÃes IMPSAT quando comparadas com a formulaÃÃo IMPEC. Entretando, com o uso de conexÃes mais complexas entre os blocos da malha, o desempho da formulaÃÃo IMPSAT reduziu.
3

Development of a multi-formulation compositional simulator

Santos, Luiz Otávio Schmall dos 02 October 2013 (has links)
Compositional simulation is a complex task that involves solving several equations simultaneously for all grid blocks representing a petroleum reservoir. Usually, these equations are separated into two groups: primary and secondary equations. Similarly, the unknowns of the system are also separated into primary and secondary variables. Considering the large number of unknowns, there are many ways to separate such variables in order to deal with the primary variables. This work aims at comparing a number of formulations for compositional reservoir simulation. It also aims at enhancing the formulations with new features not provided in the original publications. To accomplish these objectives, various formulations prevailing in the literature are implemented in The University of Texas at Austin in-house fully implicit simulator named GPAS (General Purpose Adaptive Simulator) and their performances were compared. Subsequently, some of the formulations were enhanced and tested for various applications. The comparison of the formulations studied indicated differences in efficiency for each approach. These differences come from the fact that when one is solving for a different set of primary variables, the manipulation of the equations is analogous to the use of a preconditioner applied to a linear system of equations. Furthermore, unlike a preconditioner, changing the primary variables affects the non-linear solver. Therefore, differences in terms of the number of Newton-Raphson iterations, used for solution of nonlinear equations resulting from discretization of nonlinear partial differential equations representing fluid flow in the reservoir, are expected. In addition to these differences in the non-linear solver, many formulations explore the fact that a reduced number of equations need to be solved implicitly, thus considerably reducing the CPU time dedicated to the linear solver. Finally, new features not provided in the original published formulations such as three-phase flash calculation, physical dispersion, and unstructured grid were implemented and verified. Additionally, it was demonstrated that, in certain situations, these enhancements are essential to properly model the physical phenomena occurring in oil and gas reservoirs. / text

Page generated in 0.0239 seconds