• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Probabilistic Analysis of Contracting Ebola Virus Using Contextual Intelligence

Gopalakrishnan, Arjun 05 1900 (has links)
The outbreak of the Ebola virus was declared a Public Health Emergency of International Concern by the World Health Organisation (WHO). Due to the complex nature of the outbreak, the Centers for Disease Control and Prevention (CDC) had created interim guidance for monitoring people potentially exposed to Ebola and for evaluating their intended travel and restricting the movements of carriers when needed. Tools to evaluate the risk of individuals and groups of individuals contracting the disease could mitigate the growing anxiety and fear. The goal is to understand and analyze the nature of risk an individual would face when he/she comes in contact with a carrier. This thesis presents a tool that makes use of contextual data intelligence to predict the risk factor of individuals who come in contact with the carrier.
2

Predictive Models for Ebola using Machine Learning Algorithms

Unknown Date (has links)
Identifying and tracking individuals affected by this virus in densely populated areas is a unique and an urgent challenge in the public health sector. Currently, mapping the spread of the Ebola virus is done manually, however with the help of social contact networks we can model dynamic graphs and predictive diffusion models of Ebola virus based on the impact on either a specific person or a specific community. With the help of this model, we can make more precise forward predictions of the disease propagations and to identify possibly infected individuals which will help perform trace – back analysis to locate the possible source of infection for a social group. This model will visualize and identify the families and tightly connected social groups who have had contact with an Ebola patient and is a proactive approach to reduce the risk of exposure of Ebola spread within a community or geographic location. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection

Page generated in 0.0947 seconds