Spelling suggestions: "subject:"eclipsing"" "subject:"eeclipsing""
31 |
Spherically-Symmetric Model Stellar Atmospheres and Limb Darkening: I. Limb-Darkening Laws, Gravity-Darkening Coefficients and Angular Diameter Corrections for Red Giant StarsNeilson, H. R., Lester, J. B. 19 June 2013 (has links)
Model stellar atmospheres are fundamental tools for understanding stellar observations from interferometry, microlensing, eclipsing binaries and planetary transits. However, the calculations also include assumptions, such as the geometry of the model. We use intensity profiles computed for both plane-parallel and spherically symmetric model atmospheres to determine fitting coefficients in the BVRIHK, CoRot and Kepler wavebands for limb darkening using several different fitting laws, for gravity-darkening and for interferometric angular diameter corrections. Comparing predicted variables for each geometry, we find that the spherically symmetric model geometry leads to different predictions for surface gravities log g < 3. In particular, the most commonly used limb-darkening laws produce poor fits to the intensity profiles of spherically symmetric model atmospheres, which indicates the need for more sophisticated laws. Angular diameter corrections for spherically symmetric models range from 0.67 to 1, compared to the much smaller range from 0.95 to 1 for plane-parallel models.
|
32 |
Spherically-Symmetric Model Stellar Atmospheres and Limb Darkening: I. Limb-Darkening Laws, Gravity-Darkening Coefficients and Angular Diameter Corrections for Red Giant StarsNeilson, H. R., Lester, J. B. 19 June 2013 (has links)
Model stellar atmospheres are fundamental tools for understanding stellar observations from interferometry, microlensing, eclipsing binaries and planetary transits. However, the calculations also include assumptions, such as the geometry of the model. We use intensity profiles computed for both plane-parallel and spherically symmetric model atmospheres to determine fitting coefficients in the BVRIHK, CoRot and Kepler wavebands for limb darkening using several different fitting laws, for gravity-darkening and for interferometric angular diameter corrections. Comparing predicted variables for each geometry, we find that the spherically symmetric model geometry leads to different predictions for surface gravities log g < 3. In particular, the most commonly used limb-darkening laws produce poor fits to the intensity profiles of spherically symmetric model atmospheres, which indicates the need for more sophisticated laws. Angular diameter corrections for spherically symmetric models range from 0.67 to 1, compared to the much smaller range from 0.95 to 1 for plane-parallel models.
|
33 |
A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, δ Orionis Aa: II. X-Ray Variability.Nichols, Joy, Huenemoerder, D., Corcoran, Michael, Waldron, W., Nazé, Y., Pollock, Andy, Moffat, A., Lauer, J., Shenar, Tomer, Russell, C., Richardson, N., Pablo, H., Evans, N., Hamaguchi, K., Gull, T., Hamann, W.-R., Oskinova, L., Ignace, Richard, Hoffman, Jennifer, Hole, K., Lomax, Jamie 18 August 2015 (has links) (PDF)
We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the δ Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of ≈ 479 ks and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range of 5–25 Å is confirmed, with a maximum amplitude of about ±15% within a single ≈ 125 ks observation. Periods of 4.76 and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in the flux level throughout the nine-day observational campaign. Using 40 ks contiguous spectra derived from the original observations, we investigate the variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S xv, Si xiii, and Ne ix. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at ϕ = 0.0 when the secondary δ Ori Aa2 is at the inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind–wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability. Based on data from the Chandra X-ray Observatory and the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute of Aerospace Studies, and the University of British Columbia, with the assistance of the University of Vienna.
|
34 |
Minimum entropy techniques for determining the period of W UMA starsMcArthur, Ian Albert 08 1900 (has links)
This MSc report discusses the attributes of W Ursae Majoris (W UMa) stars and an investigation into the Minimum Entropy (ME) method, a digital technique applied to the determination of their periods of variability. A Python code programme was written to apply the ME method to photometric data collected on W UMa stars by the All Sky
Automated Survey (ASAS). Starting with the orbital period of the binaries estimated by ASAS, this programme systematically searches around this period for the period which corresponds to the lowest value of entropy. Low entropy here means low scatter (or spread) of data across the phase-magnitude plane. The ME method divides the light curve plot area into a number of elements of the investigators choosing. When a particular orbital period is applied to this photometric data, the resulting distribution of this data in the light curve plane corresponds to a speci c number of data points in each element into which this plane has been divided. This data spread is measured and calculated in terms of entropy and the lowest value of entropy corresponds to the lowest spread of data across the light curve plane. This should correspond to the best light curve shape available from the data and therefore the most accurate orbital period available. Subsequent to the testing of this Python code on perfect sine waves, it was applied, and its results compared, to the 62 ASAS eclipsing binary stars which were investigated by Deb and Singh (2011). The method was then applied to selected stars from the ASAS data base. / Environmental Sciences / M. Sc. (Astronomy)
|
35 |
Fundamental Parameters of Eclipsing Binaries in the Kepler Field of ViewMatson, Rachel A. 15 December 2016 (has links)
Accurate knowledge of stellar parameters such as mass, radius, effective temperature, and composition inform our understanding of stellar evolution and constrain theoretical models. Binaries and, in particular, eclipsing binaries make it possible to measure directly these parameters without reliance on models or scaling relations. In this dissertation we derive fundamental parameters of stars in close binary systems with and without (detected) tertiary companions to test and inform theories of stellar and binary evolution. A subsample of 41 detached and semi-detached short-period eclipsing binaries observed by NASA’s Kepler mission and analyzed for eclipse timing variations form the basis of our sample. Radial velocities and spectroscopic orbits for these systems are derived from moderate resolution optical spectra and used to determine individual masses for 34 double-lined spectroscopic binaries, five of which have detected tertiaries. The resulting mass ratio M2/M1 distribution is bimodal, dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. A more detailed analysis of KIC 5738698, a detached binary consisting of two F-type main sequence stars with an orbital period of 4.8 days, uses the derived radial velocities to reconstruct the primary and secondary component spectra via Doppler tomography and derive atmospheric parameters for both stars. These parameters are then combined with Kepler photometry to obtain accurate masses and radii through light curve and radial velocity fitting with the binary modeling software ELC. A similar analysis is performed for KOI-81, a rapidly-rotating B-type star orbited by a low-mass white dwarf, using UV spectroscopy to identify the hot companion and determine masses and temperatures of both components. Well defined stellar parameters for KOI-81 and the other close binary systems examined in this dissertation enable detailed analyses of the physical attributes of systems in different evolutionary stages, providing important constraints for the formation and evolution of close binary systems.
|
36 |
FRIENDS OF HOT JUPITERS. IV. STELLAR COMPANIONS BEYOND 50 au MIGHT FACILITATE GIANT PLANET FORMATION, BUT MOST ARE UNLIKELY TO CAUSE KOZAI–LIDOV MIGRATIONNgo, Henry, Knutson, Heather A., Hinkley, Sasha, Bryan, Marta, Crepp, Justin R., Batygin, Konstantin, Crossfield, Ian, Hansen, Brad, Howard, Andrew W., Johnson, John A., Mawet, Dimitri, Morton, Timothy D., Muirhead, Philip S., Wang, Ji 03 August 2016 (has links)
Stellar companions can influence the formation and evolution of planetary systems, but there are currently few observational constraints on the properties of planet-hosting binary star systems. We search for stellar companions around 77 transiting hot Jupiter systems to explore the statistical properties of this population of companions as compared to field stars of similar spectral type. After correcting for survey incompleteness, we find that 47% +/- 7% of hot Jupiter systems have stellar companions with semimajor axes between 50 and 2000 au. This is 2.9 times larger than the field star companion fraction in this separation range, with a significance of 4.4 sigma. In the 1-50 au range, only 3.9(-2.0)(+4.5)% of hot Jupiters host stellar companions, compared to the field star value of 16.4% +/- 0.7%, which is a 2.7 sigma difference. We find that the distribution of mass ratios for stellar companions to hot Jupiter systems peaks at small values and therefore differs from that of field star binaries which tend to be uniformly distributed across all mass ratios. We conclude that either wide separation stellar binaries are more favorable sites for gas giant planet formation at all separations, or that the presence of stellar companions preferentially causes the inward migration of gas giant planets that formed farther out in the disk via dynamical processes such as Kozai-Lidov oscillations. We determine that less than 20% of hot Jupiters have stellar companions capable of inducing Kozai-Lidov oscillations assuming initial semimajor axes between 1 and 5 au, implying that the enhanced companion occurrence is likely correlated with environments where gas giants can form efficiently.
|
37 |
Studium změn sklonu u zákrytových dvojhvězd / Study of inclination change for the eclipsing binariesJuryšek, Jakub January 2016 (has links)
This thesis deals with the study of the eclipsing binaries with inclination changes, caused by orbital precession due to third body in the system. Methods of semiauthomatic detection of the inclination changing eclipsing binaries among huge lightcurves databases have been developed. These methods have been applied to the ASAS-3 and OGLE III LMC databases. As a result, 39 new systems suspected of orbital precession have been found and 33 of them are situated in the Large Magellanic Cloud, with only one previously studied system. Increasing the number of known multiple systems especially those located outside Milky Way allows to study inter-galactic differences in star formation. In this work, we bring detailed study of ten new systems and restrictions on the third body parameters are presented. Powered by TCPDF (www.tcpdf.org)
|
38 |
The Strange Evolution of the Large Magellanic Cloud Cepheid OGLE-LMC-CEP1812Neilson, Hilding R., Izzard, Robert G., Langer, Nobert, Ignace, Richard 01 September 2015 (has links)
Classical Cepheids are key probes of both stellar astrophysics and cosmology as standard candles and pulsating variable stars. It is important to understand Cepheids in unprecedented detail in preparation for upcoming Gaia, James Webb Space Telescope (JWST) and extremely-large telescope observations. Cepheid eclipsing binary stars are ideal tools for achieving this goal, however there are currently only three known systems. One of those systems, OGLE-LMC-CEP1812, raises new questions about the evolution of classical Cepheids because of an apparent age discrepancy between the Cepheid and its red giant companion. We show that the Cepheid component is actually the product of a stellar merger of two main sequence stars that has since evolved across the Hertzsprung gap of the HR diagram. This post-merger product appears younger than the companion, hence the apparent age discrepancy is resolved. We discuss this idea and consequences for understanding Cepheid evolution.
|
39 |
Probing stellar evolution through spectroscopy of horizontal branch starsFor, Bi-Qing 13 October 2011 (has links)
This dissertation describes a new detailed abundance study of field
red horizontal branch stars, RR Lyrae stars and blue horizontal branch stars. To carry out this study, we obtained high-resolution and high signal-to-noise ratio echelle spectra at the McDonald observatory and Las Campanas Observatory. In addition,
new pulsational emphemerides were derived to analyze the spectra
of RR Lyrae stars throughout the pulsational cycles. We find that the abundance ratios are generally consistent with those of field stars of similar metallicity
in different evolutionary
stages and throughout the pulsational cycles for RR Lyrae stars. We also estimated the red and blue edges of the RR Lyrae instability strip using the derived effective temperatures of RHB and BHB stars. New variations between microturbulence and effective temperature are found among the HB population.
For the first time the variation
of microturbulence as a function of phase is empirically shown to be similar to the theoretical calculations. Finally, through the study of a rare eclipsing sdB and M dwarf binary, we discovered an unusually low mass for this type of HB star, which observationally proved the existence of a new group of low-mass sdB stars that was theoretically predicted in the past. / text
|
40 |
Flare hvězdy / Flare starsKára, Jan January 2018 (has links)
The works deals with the study of the flare stars, which is a group of stars for which sudden brightening can be observed. The work focuses on a star GJ 3236, which is a low-mass eclipsing binary and on which numerous flares have been observed. For the analysis of this system spectroscopic and photometric data were used, which were obtained at various observatories. Parameters of the binary system have been determined by analysing spectroscopic and photometric data with the program PHOEBE. A total of 241 flares have been detected in the photometric data and for 190 flares, which light curves were not affected by eclipses, released energies were estimated. The set of flares was used for the study of stellar activity of the binary. The energy distribution of observed flares is similar to the flares observed on other flare stars and also on the Sun. This suggests, that the flare mechanism is the same for these stars.
|
Page generated in 0.0684 seconds