Spelling suggestions: "subject:"eclipsing binaries"" "subject:"eeclipsing binaries""
21 |
The mass-radius relationship of M dwarf stars from Kepler eclipsing binariesHan, Eunkyu 01 February 2021 (has links)
M dwarf stars make up over 70% of stars by number in the Milky Way Galaxy and are known to host at least two exoplanets per star on average. Using mutually eclipsing double-lined spectroscopic binary stars (SB2 EBs), astronomers can empirically measure stellar properties of M dwarf stars including mass and radius. However, empirical measurements systematically differ from the predictions of stellar evolutionary models and show large scatter. Some M dwarf stars are outliers, with radii that are a factor of 2-to-3 larger than model predictions, assuming they were measured accurately. In this dissertation, I investigated whether the outliers, systematic offset, and the scatter seen in the mass-radius diagram are physical, using SB2 EBs with photometry from NASA's Kepler Mission and high-resolution near-infrared ground-based spectroscopy. Empirical measurements using space-based photometry and high-resolution near-infrared ground-based spectroscopy, together with Bayesian model-fitting techniques, provide significant advancements over previous measurements.
For this dissertation work, a sample of Kepler EBs were carefully chosen to be detached and non-interacting. I conducted a radial velocity survey of the sample using Immersion GRating INfrared Spectrometer (IGRINS) with the Discovery Channel Telescope (DCT) and iSHELL with NASA's Infrared Telescope Facility (IRTF). Combined with high-precision Kepler data, I determined the masses and radii of the component stars in the sample. I also determined a new mass-radius relationship of M dwarf stars using the sample of Kepler EB systems.
My investigation showed that the outliers in the mass-radius diagram of M dwarf stars are not physical and they are due to the quality of data and from analysis using different pipelines. I also showed that the offset and scatter in the mass-radius diagram are persistent, which are not from the measurement uncertainties. This suggests the need for an extra degree of freedom to accurately capture the discrepancies between the empirical measurements and model predictions. Lastly, I showed that reduced convective heat flow due to enhanced magnetic fields from rapid stellar rotation can account for the offset and scatter in the measurements.
|
22 |
Studium změn sklonu u zákrytových dvojhvězd / Study of inclination change for the eclipsing binariesJuryšek, Jakub January 2016 (has links)
This thesis deals with the study of the eclipsing binaries with inclination changes, caused by orbital precession due to third body in the system. Methods of semiauthomatic detection of the inclination changing eclipsing binaries among huge lightcurves databases have been developed. These methods have been applied to the ASAS-3 and OGLE III LMC databases. As a result, 39 new systems suspected of orbital precession have been found and 33 of them are situated in the Large Magellanic Cloud, with only one previously studied system. Increasing the number of known multiple systems especially those located outside Milky Way allows to study inter-galactic differences in star formation. In this work, we bring detailed study of ten new systems and restrictions on the third body parameters are presented. Powered by TCPDF (www.tcpdf.org)
|
23 |
Flare hvězdy / Flare starsKára, Jan January 2018 (has links)
The works deals with the study of the flare stars, which is a group of stars for which sudden brightening can be observed. The work focuses on a star GJ 3236, which is a low-mass eclipsing binary and on which numerous flares have been observed. For the analysis of this system spectroscopic and photometric data were used, which were obtained at various observatories. Parameters of the binary system have been determined by analysing spectroscopic and photometric data with the program PHOEBE. A total of 241 flares have been detected in the photometric data and for 190 flares, which light curves were not affected by eclipses, released energies were estimated. The set of flares was used for the study of stellar activity of the binary. The energy distribution of observed flares is similar to the flares observed on other flare stars and also on the Sun. This suggests, that the flare mechanism is the same for these stars.
|
24 |
Minimum entropy techniques for determining the period of W UMA starsMcArthur, Ian Albert 08 1900 (has links)
This MSc report discusses the attributes of W Ursae Majoris (W UMa) stars and an investigation into the Minimum Entropy (ME) method, a digital technique applied to the determination of their periods of variability. A Python code programme was written to apply the ME method to photometric data collected on W UMa stars by the All Sky
Automated Survey (ASAS). Starting with the orbital period of the binaries estimated by ASAS, this programme systematically searches around this period for the period which corresponds to the lowest value of entropy. Low entropy here means low scatter (or spread) of data across the phase-magnitude plane. The ME method divides the light curve plot area into a number of elements of the investigators choosing. When a particular orbital period is applied to this photometric data, the resulting distribution of this data in the light curve plane corresponds to a speci c number of data points in each element into which this plane has been divided. This data spread is measured and calculated in terms of entropy and the lowest value of entropy corresponds to the lowest spread of data across the light curve plane. This should correspond to the best light curve shape available from the data and therefore the most accurate orbital period available. Subsequent to the testing of this Python code on perfect sine waves, it was applied, and its results compared, to the 62 ASAS eclipsing binary stars which were investigated by Deb and Singh (2011). The method was then applied to selected stars from the ASAS data base. / Environmental Sciences / M. Sc. (Astronomy)
|
Page generated in 0.091 seconds