Spelling suggestions: "subject:"ecohydrology"" "subject:"geohydrology""
11 |
Impact of exotic Ponderosa pine (Pinus ponderosa Doug. ex Laws. ) plantations on water resources in northwestern Patagonia, Argentina /Licata, Julian A. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2008. / Printout. Includes bibliographical references (leaves 136-151). Also available on the World Wide Web.
|
12 |
Conceptualisations and applications of eco-hydrological indicators under conditions of climate change /Barichievy, K R January 2009 (has links)
Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2009. / Full text also available online. Scroll down for electronic link.
|
13 |
Groundwater-Surface Water Interactions on Tree Islands in the Everglades, South FloridaSullivan, Pamela L 26 October 2011 (has links)
The marked decline in tree island cover across the Everglades over the last century, has been attributed to landscape-scale hydrologic degradation. To preserve and restore Everglades tree islands, a clear understanding of tree island groundwater-surface water interactions is needed, as these interactions strongly influence the chemistry of shallow groundwater and the location and patterns of vegetation in many wetlands. The goal of this work was to define the relationship between groundwater-surface water interactions, plant-water uptake, and the groundwater geochemical condition of tree islands. Groundwater and surface water levels, temperature, and chemistry were monitored on eight constructed and one natural tree island in the Everglades from 2007-2010. Sap flow, diurnal water table fluctuations and stable oxygen isotopes of stem, ground and soil water were used to determine the effect of plant-water uptake on groundwater-surface water interactions. Hydrologic and geochemical modeling was used to further explore the effect of plant-groundwater-surface water interactions on ion concentrations and potential mineral formation.
A comparison of groundwater and surface water levels, along with calculated groundwater evapotranspiration rates, revealed that the presence of a water table depression under the islands was concurrent with elevated groundwater uptake by the overlying trees. Groundwater chemistry indicated that the water table depression resulted in the advective movement of regional groundwater into the islands. A chloride budget and oxygen isotopes indicated that the elevated ionic strength of tree island groundwater was a result of transpiration. Geochemical modeling indicated that the elevated ionic strength of the groundwater created conditions conducive to the precipitation of aragonite and calcite, and suggests that trees may alter underlying geologic and hydrologic properties. The interaction of tree island and regional groundwater was mediated by the underlying soil type and aboveground biomass, with greater inputs of regional groundwater found on islands underlain by limestone with high amounts of aboveground biomass. Variations in climate, geologic material and aboveground biomass created complex groundwater-surface water interactions that affected the hydrogeochemical condition of tree islands.
|
14 |
The impact of rainfall and fog on soil moisture dynamics in the Namib DesertLi, Bonan 07 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Soil moisture is a key variable in dryland ecosystems. Knowing how and to what extent soil moisture is influenced by rainfall and non-rainfall waters (e.g., dew, fog, and water vapor) is essential to understand dryland dynamics. The hyper-arid environment of the Namib Desert with its frequent occurrence of fog events provides an ideal place to conduct research on the rainfall and non-rainfall effects on soil moisture dynamics. Rainfall and soil moisture records was collected from three locations (gravel plain at Gobabeb (GPG), sand dune at Gobabeb (SDG), and gravel plain at Kleinberg (GPK)) within the Namib Desert using CS655 Water Content Reflectometer and tipping-buckets, respectively. The fog data was collected from the FogNet stations. Field observations of rainfall and soil moisture from three study sites suggested that soil moisture dynamics follow rainfall patterns at two gravel plain sites, whereas no significant relationships was observed at the sand dune site. The stochastic modeling results showed that most of soil moisture dynamics can be simulated except the rainless periods. Model sensitivity in response to different soil and vegetation parameters was investigated under diverse soil textures. Sensitivity analyses suggested that soil hygroscopic point (sh), field capacity (sfc) were two main parameters controlling the model output. Despite soil moisture dynamics can be partially explained by rainfall, soil moisture dynamics during rainless period still poorly understood. In addition, characterization of fog distribution in the Namib Desert is still lacking. To this end, nearly two years’ continuous daily records of fog were used to derive fog distribution. The results suggested that fog is able to be well - characterized by a Poisson process with two parameters (arrival rate and average depth). Field observations indicated that there is a moderate positive relationship between soil moisture and fog at GPG and the relationship tend to be less significant at the other two sites. A modified modeling results suggested that mean and general patterns of soil moisture can be captured by the modeling. This thesis is of practical importance for understanding soil moisture dynamics in response to the rainfall and fog changing conditions.
|
15 |
Wildfire Refugia Within a Boreal Shield Peatland and Rock Barrens Landscape: Identification, Drivers, and Ecohydrological IndicatorsTekatch, Alexandra 11 1900 (has links)
Fire refugia, defined as unburned, functionally intact patches of habitat within a fire footprint, play an important role in post-fire recovery and landscape resilience to fires. Increased fire activity in the Canadian boreal forest due to climate change highlights the need to properly identify and manage wildfire refugia to protect the natural resilience of boreal ecosystems. While previous fire refugia research has focused on western Canada, we present the first characterization of fire refugia, with a focus on peatland fire refugia, in Ontario. We use remotely sensed multispectral imagery and stereo-derived DEM data from the 2018 Parry Sound 33 wildfire in the Ontario Boreal Shield to determine the primary drivers of fire refugia formation on this landscape, and to develop a model to predict the occurrence of potential fire refugia based on these drivers. We found that the Normalized Difference Moisture Index (NDMI) and the Topographic Position Index (TPI, 200m radius neighbourhood) had the strongest control on wildfire refugia probability in the model, with a combined relative influence of 63.8%. Additionally, wildfire refugia tended to form in peat-filled depressions, valleys, and forested areas within the study area, whereas drier, open rock barrens were most susceptible to fire. Overall, the model had a high predictive accuracy, with a cross-validated AUC of 0.88, and a sensitivity of 81.2%. We conclude that local scale topography and simple flow accumulation models can act as a powerful tool in predicting fire refugia occurrence in this landscape.
In the second part of this study, we examined the in-situ indicators of peatland fire refugia occurrence. We conducted vegetation surveys at eight peatland fire refugia and eight reference sites representative of the range of wetland types found on this landscape. We found that the peatland fire refugia had a significantly different understorey vegetation composition when compared to the reference sites. Environmental factors within the peatland fire refugia which significantly influenced this separation included median peat depth, pH, and specific conductance (SpC); where peatland fire refugia were deeper and had a lower pH and SpC when compared to the reference sites. While no vascular indicator species were identified within the peatland fire refugia, there were two bryophyte indicator species: Sphagnum rubellum and Sphagnum magellanicum which were significantly associated with the peatland fire refugia. We conclude that understorey vegetation composition, indicator species presence, peat depth, pH and SpC could be useful when distinguishing peatlands with a high refugia probability, however, further research is needed to understand how this may vary geographically and in response to top-down controls, such as fire weather. Overall, the preliminary characterization of fire refugia in the Ontario Boreal Shield will provide a basis for the identification and mapping of fire refugia within this ecozone for applications in conservation, restoration, and fire and land management. / Thesis / Master of Science (MSc) / Areas which remain unburned, or burn at a low severity during a wildfire, are referred to as fire refugia by scientists and conservationists for their role in providing habitat to plants and animals following a fire and promoting the regeneration of the burned landscape. Here, we use modelling and field survey methods to examine the biological and physical controls of fire refugia occurrence in an Ontario Boreal Shield landscape. We find that large, deep peatlands and wetlands in bedrock depressions on this landscape are more likely to act as fire refugia, and that confirmed peatland fire refugia have distinct vegetation communities and more stable water tables when compared to other peatlands and wetlands on this landscape. These insights into fire refugia occurrence in the Ontario Boreal Shield will assist in the detection of potential refugia for the targeting of conservation and management strategies to help protect these ecologically important areas.
|
16 |
EFFECT OF DRYING INDUCED AFFORESTATION ON PEATLAND ECOHYDROLOGY: IMPLICATIONS FOR WILDFIRE VULNERABILITYBaisley, Steven A. 10 1900 (has links)
<p>Peatlands cover 170 million hectares of Canada's land and are long thought to be resistant to consumption by wildfire. However, boreal peatlands are likely to become increasingly vulnerable to wildfire as climate change lowers water tables and exposes deeper peat to burning. Currently, the Canadian Forest Fire Weather Index (FWI) System is used to assess vulnerability of peat to ignition and consumption, despite being developed for upland soils. Given the need to assess wildfire risk in peatlands, this study investigated the range and variability of key variables relevant to wildfire hydrology of the subsurface and canopy across five peatlands. Road impacted and drained peatlands were included to examine the influence of drying on afforestation (a surrogate for a future drier climate) and extend the range of parameterizations for peatlands.</p> <p>Increased drying led to significant increases in canopy fuel loads coupled with increased interception (upwards of 97%) and canopy storage, highlighting failures of the current FWI rainfall routine. Increased drying led to enhanced transpiration across impacted (≈ 2.8 mm d<sup>-1</sup>) compared to pristine sites (≈ 0.68 mm d<sup>-1</sup>). However, increases in above ground vulnerability were somewhat offset by ecohydrological feedbacks serving to increase peat moisture retention in the drier sites. But the most severely impacted peatland displayed the poorest moisture retention qualities of all peatlands perhaps indicating the existence of a threshold response to drying induced afforestation on peat moisture retention properties.</p> <p>Our findings suggest that modified FWI components are suitable for predicting the general moisture status and fire danger in boreal peatlands, highlighting key areas in the parameter to be improved.</p> / Master of Science (MSc)
|
17 |
Ecohydrology and self-organization of black ash wetlandsDiamond, Jacob S. 19 April 2019 (has links)
Wetlands self-organize through reciprocal controls between vegetation and hydrology, but external disturbance may disrupt these feedbacks with consequent changes to ecosystem state. Imminent and widespread emerald ash borer (EAB) infestation throughout North America has raised concern over possible ecosystem state shifts in forested wetlands (i.e., to wetter, more herbaceous systems) and loss of forest function, calling for informed landscape-scale management strategies. In this dissertation, I use black ash wetlands as a model system to understand complex ecohydrological dynamics, and I use these dynamics to explain the self-organization of observed patterns in vegetation, hydrology, and microtopographic structure. The combined inferences from the three research chapters strongly implicate black ash trees as autogenic ecosystem engineers, who, through the process of improving their local growing conditions, cause a cascade of environmental changes that result in a unique ecosystem structure. This unique ecosystem structure is under existential threat from the invasive EAB. Through experiment, I show that loss of black ash trees to EAB induces persistent shifts in hydrology that result from reduced evapotranspiration and subsequent changes to water table regime (Chapter 2). These results suggest the potential for catastrophic shifts of black ash wetlands from forested to non-forested, marsh-like states under a do-nothing EAB management scenario. However, research presented here suggests that preemptive management of black ash wetlands can potentially mitigate loss of desirable forested conditions. Forest management to replace black ash with other wetland canopy species may be a slow and steady path towards forest maintenance, and harvesting may facilitate establishment of alternative species. In the case of preemptive harvesting of black ash, I posit that maintenance of microtopographic structure, either through leaving downed woody debris or through physical creation, is paramount to forest recovery. Microtopography in these ecosystems provides crucial relief from anaerobic stress generated by higher water tables, allowing woody species to persist on elevated microsites (e.g., 30 cm above base soil elevation). Moreover, I show that microtopography in black ash wetlands has clear structure and pattern and that its presence arises from self-organizing processes, driven by feedbacks among hydrology, biota, and soils (Chapter 3). I further show that this structured and non-random microtopography has profound influence on biogeochemical processes in black ash wetlands, controlling plant richness and biomass, and soil chemistry gradients (Chapter 4). Based on this work, I propose that structured wetland microtopography is a diagnostic feature of strongly coupled plant-water interactions, and these interactions may be important for ecosystem resilience to disturbance. / Doctor of Philosophy / Plants need water, but not too much nor too little. In wetland ecosystems, plants influence water levels through both water use and their effect on soil surfaces. When wetland plants use water, they take it from the soil, which leads to lowering of water levels and drier soil conditions. In many wetlands, the amount of water that plants take from the soil is a fine-tuned process. Therefore, when disturbances happen to wetland ecosystems, like large-scale tree mortality, major changes can occur to the amount of water in the soil and soils typically become wetter. This change to a wetter ecosystem can persist for long periods, and can affect the types of plants that can live in the wetland. However, plants also affect wetland water levels by engineering the soil around them, essentially lifting themselves to drier conditions. Through this engineering, plants create a mosaic of different habitat types that are important for many organisms and ecological processes. Exactly how plants engineer their environment is still not well understood, but we know that ecosystem engineering by plants is critical to the structure and function of wetlands around the world. Understanding how plants create and maintain their own environmental structures provides a deeper insight into the development of vegetated landscapes and their response to change. This dissertation aims to improve our understanding of ecosystem engineering by plants in forested wetlands so that we may more effectively manage these important natural resources and in turn more accurately predict their response to global change.
|
18 |
Drivers of variability in transpiration and implications for stream flow in forests of western Oregon /Moore, Georgianne W. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2004. / Printout. Includes bibliographical references (leaves 143-154). Also available on the World Wide Web.
|
19 |
Vegetation change and water, sediment and carbon dynamics in semi-arid environmentsPuttock, Alan Keith January 2013 (has links)
This study develops understanding of vegetation change and water, sediment and carbon dynamics in semi-arid environments. Objectives were addressed using an integrated ecohydrological and biogeochemical approach. Fieldwork, over two contrasting grass-woody transitions at the Sevilleta National Wildlife Refuge, New Mexico, USA; quantified vegetation structure, soil structure and the spatial distribution of soil carbon resources. Over both transitions; woody sites showed a lower percentage vegetation cover and a greater heterogeneity in vegetation pattern, soil properties and soil carbon. Soil organic carbon differed in both quantity and source across the sites; with levels higher under vegetation, particularly at the woody sites. Biogeochemical analysis revealed soil organic carbon to be predominantly sourced from grass at the grassland sites. In contrast, at the woody sites soil organic carbon under vegetation patches was predominantly sourced from woody vegetation, whilst inter-patch areas exhibited a strong grass signature. Investigation of function focussed on the hydrological response to intense rainfall events. Rainfall-runoff monitoring showed woody sites to exhibit greater; runoff coefficients, event discharge, eroded sediment and event carbon yields. In contrast to grass sites, biogeochemical analysis showed the loss of organic carbon from woody sites to exhibit a mixed source signal, reflecting the loss of carbon originating from both patch and interpatch areas. To examine the linkages between vegetation structure and hydrological function, a flow length metric was developed to quantify hydrological connectivity; with woody sites shown to have longer mean flow pathways. Furthermore, in addition to rainfall event characteristics, flow pathway lengths were shown to be a significant variable for explaining the variance within fluxes of water, sediment and carbon. Results demonstrating increased event fluxes of sediment and carbon from woody sites have important implications for the quality of semi-arid landscapes and other degrading ecosystems globally. It is thus necessary to translate the understanding of carbon dynamics developed within this study to the landscape scale, so changing fluvial carbon fluxes can be incorporated into carbon budgets, research frameworks and land management strategies at policy-relevant scales.
|
20 |
Measurement of Fine Spatial Scale Ecohydrologic Gradients in a Pinyon-Juniper EcosystemMadsen, Matthew David 01 December 2008 (has links)
With the dramatic expansion of pinyon-juniper woodlands over the last century, improved understanding of how these woodlands modify infiltration properties is needed, in order for land managers to make informed decisions on how to best manage their specific resources. However, current methods for measuring soil infiltration are often limited by low sample sizes and high experimental error, due to constraints associated with remote, non agricultural settings. This thesis first presents a scheme for automating and calibrating two commercially available infiltrometers, which allows collection of a large number of precise unsaturated infiltration measurements in a relatively short period of time. Secondly, a new method to precisely determine saturated hydraulic conductivity from small intact soil cores collected in the field is demonstrated. This method removes bias due to measurement error using a multiple head linear regression approach. Finally, hundreds of fine spatial scale measurements of soil sorptivity, unsaturated hydraulic conductivity, saturated hydraulic conductivity, soil water content, and other soil descriptive measurements along radial line transects extending out from the trunk of juniper (Juniperus osteosperma) and pinyon pine (Pinus edulis) trees. Within the subcanopy of these trees, interactions among litter material, root distributions, and hydrophobic soil significantly influence ecohydrologic properties by limiting and redirecting infiltration below the soil surface. Consequently, hydrophobicity appears to be a mechanism that promotes survival of woody vegetation in arid environments, through decreasing evaporation rates from the soil surface. We further demonstrate how differences in unsaturated infiltration and soil water content between the subcanopy and intercanopy zones are not discrete. Unsaturated infiltration was significantly lower within the subcanopy than in the intercanopy, and increased by eight-fold across a gradient extending outward from near the edge of the canopy to approximately two times the canopy radius. This gradient was not strongly related to soil moisture. In the intercanopy, increasing structural development of biological soil crust cover beyond this gradient was positivity correlated with infiltration capacity. Consequently, these results indicate that the spatial location of the trees should be considered in the assessment and modeling of woody plant and biological soil crust influence on infiltration capacity in a pinyon-juniper ecosystem.
|
Page generated in 0.0288 seconds