• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vegetation ecology of the seasonal floodplains in the Okavango Delta, Botswana

Bonyongo, Mpaphi Casper 01 March 2007 (has links)
Please read the abstract in the 08summary part of this document / Dissertation (MSc (Botany))--University of Pretoria, 2007. / Plant Science / unrestricted
2

African wild dog (Lycaon pictus) area utilization in the northern Tuli game reserve, Botswana.

Van Wyk, Dewald. January 2013 (has links)
M. Tech. Nature Conservation / The influence of predation on ungulates is most commonly measured through the direct lethal effects of predators. However, indirect effects of predation risk may alter prey behaviour and survival. The introduction of a pack of African wild dogs (Lycaon pictus) into the Northern Tuli Game Reserve, Botswana, allowed various indirect responses of ungulates to predation risk to be investigated. The study focused on predation pressure and its effects on ungulate activities during the denning period of the wild dogs, and on how the distribution and density of prey and lions influenced wild dog movement patterns in both the denning and non-denning period.
3

Movement of migratory zebra and wildebeest in northern Botswana

Joos-Vandewalle, Marc Eric 07 September 2012 (has links)
Ph.D., Faculty of Science, University of the Witwatersrand, 2000
4

The ecology and management of the fishes of the Okavango Delta, Botswana, with particular reference to the role of the seasonal floods

Merron, Glen Steven January 1991 (has links)
The Okavango is a vast inland delta system in northern Botswana which receives an annual flood from the highlands of southern Angola. There are distinct communities of fish in the Okavango which can be separated from each other by the physical characteristics of the different habitat types with which they co-evolved. This thesis provides an account of the biology and ecology of selected fish species in the Okavango Delta. Their response to the annual flood regime, and the environmental factors which limit their distribution and abundance, are examined. The thesis emphasizes the importance of water fluctuations in determining the nature of the fish fauna and the reaction of the fishes in terms of community structure, movements, breeding, predator-prey interactions and feeding. Four major ecotones were studied in the Okavango Delta. In the riverine floodplain and perennial swamp ecotones a higher species diversity was recorded than in the seasonal swamp and drainage rivers ecotones where diversity was lowest and comprised mainly of smaller fish species. A greater variety of habitat types was associated with the riverine floodplain and perennial swamp relative to the seasonal swamp and drainage rivers. The variety of habitat types between ecotones is associated with the degree of flood inundation in the respective ecotones. During the course of this study, annual recruitment of fish into the drainage rivers was from refugia in the seasonal swamp whereas the greatest degree of lateral and longitudinal movement was in the riverine floodplain and perennial swamp. Movement was in response to both biological requirements, such as availability of food and spawning sites, and physical features of the environment, such as the changing water depth. The total catch per unit effort (CPUE) of fish throughout the year was more constant in the riverine floodplain and perennial swamp than in the seasonal swamp and drainage rivers where CPUE fluctutated widely. An increase in CPUE during the duration of this study was apparent and related to the magnitude of the annual flood. In contrast to most other African wetlands, the arrival of the annual flood in the Okavango Delta coincides largely with the dry winter months. This situation presented an opportunity to compare the influence of floods and water temperature on the reproductive biology of the selected fish species. The results show a definite pattern and indicate that both the flood cycle and increased water temperatures greatly influence the breeding cycles of the selected species. The tilapia Oreochromis andersonii exhibited a considerable degree of phenotypic plasticity. Fish from the seasonally inundated areas showed a smaller mean size, egg size and larger number of eggs relative to fish in the perennially flooded areas. The size at sexual maturity was also smaller. These different reproductive characteristics exhibited by O. andersonii are dependent on the degree of water retention in the different habitats. The fishes of the Okavango have adopted other reproductive strategies to survive the changing environmental conditions brought about by an annual flood cycle. These strategies include the construction of foam nests, as described for Hepsetus odoe, for guarding the young and to provide an oxygen-rich environment. Two main non-piscivorous feeding pathways were identified in the Okavango. These are a detritus pathway based on dead plant and animal material, and an epiphyte pathway, based on algae and invertebrates that are attached to plant stems. Seasonal changes in diet in relation to the annual flood were recorded. The most dramrtic change was demonstrated by the catfish Clarias gariepinus which congregates in mass aggregations in the northern regions of the Delta and hunt in packs. Pack-hunting by catfish is a regular response to the annual fluctuations in water level. It is my conclusion that the main flow of biotic and abiotic stimuli within the Okavango Delta originates from the relatively hydrologically stable riverine floodplain and perennial swamp ecotones to the widely fluctuating seasonal swamp and drainage rivers ecotones. The relatively stable ecotones allow a diverse and biotically interdependent fish community to develop, whereas the widely fluctuating seasonal swamp and drainage rivers ecotones are characterized by a less diverse and interdependent fish community. The degree of abiotic and biotic interdependence among fish in an ecotone is very important for the long term management of the Okavango Delta. Potential developers have to determine whether the effect of a given action by man is likely to result in a long term disturbance or merely in an elastic recoil to a more or less similar state. Recommendations are made on the conservation and management of Okavango fishes taking into account the ecological characteristics of the delta.
5

Variation in cattle numbers, rainfall amount and land availability in Tlokweng sub district, Botswana

Mpotokwane, Masego Ayo January 1999 (has links)
This study describes and analyses cattle management in Tlokweng Sub District. Two methods were used. The two are households' interviews and a system dynamics STELLA model called the Rain Land Cattle model, which was adapted from the 1990 Braat and Opschoor model. Ninety households, 61% of the 1991 households in the study area, were interviewed. All the households had arable fields and fifty nine percent had cattle. The Rain Land Cattle model uses 52 parameters to predict several cattle management factors, which include rainfall, stocking rate, total grazing area and livestock water availability. The model explored the use of parameters to relate water availability to grazing area and show the seasonality of the water source. Sixty two percent of the household had access to an ideal livestock water source. Cattle graze from the 5000 hectares of arable area for four months after harvesting. This seasonal grazing, optimises the uses of the grazing resource in the small sub - district. The model simulated a S and 20 percent permanent grazing land loss. Such a grazing land loss, increased the stocking rate, decreased the carrying capacity and cast doubt on sustainable cattle production. The model shows that the stocking rate is chronically greater than the carrying capacity. Most households acknowledged that there was land pressure due to the loss of grazing land. A drier climate scenario will lead to a loss of seasonal grazing, reduced livestock water, which will increase cattle emigration and cause cattle management problems. The model is exploratory; it needs to be validated. It is easily understood, adaptable to other communal areas, and identifies the most influential factors in cattle management. The livestock water parameters functioned reliably in the model. Based on the understanding of the cattle management derived from this study, more fenced grazing land is unlikely to improve the cattle management in the area.
6

The ecology of Meyer's parrot (Poicephalus meyeri) in the Okavango Delta, Botswana.

Boyes, Rutledge Stephen. January 2008 (has links)
Meyer’s Parrot Poicephalus meyeri is the smallest of the nine Poicephalus parrots, forming the P. meyeri superspecies complex with five congeners. Their distributional range far exceeds any other African parrot, extending throughout subtropical Africa. Meyer’s Parrots had previously not been studied in the wild, and therefore, gathering high-quality empirical data on their behavioural ecology became a research and conservation priority. The primary aim of the study was to correlate environmental (e.g. rainfall, habitat availability, resource characteristics, food resource abundance and temperature) and social (e.g. inter- and intra-specific competition, predation, and human disturbance) variables with aspects of their ecology (e.g. flight activity, food item preferences, breeding activity, and group dynamics) to evaluate the degree of specialization in resource use (e.g. trophic, nesting and habitat niche metrics). African deforestation rates are the highest in the world, resulting in twelve out of the eighteen Meyer’s Parrot range states undergoing drastic loss of forest cover over the last 25 years. Most commentary on the population status of Meyer’s Parrots and other Poicephalus parrots pre-dates this period of rapid deforestation In addition, over 75 000 wild-caught Meyer’s Parrots and almost 1 million wild-caught Poicephalus parrots have been recorded in international trade since 1975. Empirical data from this study was used to identify ecological weaknesses (e.g. niche specialization or low breeding turnover) for evaluation within the context of deforestation in the African subtropics. Baseline data on the breeding biology and nest cavity requirements of Meyer’s Parrots was also necessary to assess the viability of applying the conservative sustained-harvest model to African parrots. A unifying goal of this study was to advance our knowledge of the ecology of African parrots and other Psittaciformes by assessing the validity of current hypotheses put forward in the literature. The Meyer’s Parrot Project was initiated in January 2004 on Vundumtiki Island in the north-eastern part of the Okavango Delta, Botswana. Due to high flood waters between March and July 2004, road transects were postponed till August 2004. Transects were conducted at Vundumtiki from August 2004 to July 2005 and February 2007 to August 2007, and at Mombo from August 2005 to January 2006. During 480 road transects over 24 months, food item preferences closely tracked fruiting and flowering phenology, resulting in significant positive correlations between Levins’ niche breadth, rainfall and food resource availability. Meyer’s Parrot can, therefore, be considered opportunistic generalists predispersal seed predator that tracks resource availability across a wide suite of potential food items, including 71 different food items from 37 tree species in 16 families. Meyer’s Parrots were, however, found to be habitat specialists preferring established galleries of riverine forest and associated Acacia-Combretum marginal woodland. These strong habitat associations facilitate their wide distribution throughout the Kavango Basin, Linyanti Swamps, down the Zambezi valley, up along the Rift Valley system in associations with the great lakes, through the Upper Nile and the Sudd, and west as far as Lake Chad through the Sahel. Seventy-five nest cavities were measured during this study, including 28 nest cavities utilized by Meyer’s Parrots within the 430ha sample area at Vundumtiki. Over 1700 hours of intensive nest observations at six nest cavities was undertaken. Meyer’s Parrots formed socially monogamous pair-bonds maintained over at least four breeding seasons. Breeding pairs established breeding territories up to an estimated 160ha within which there were 1–6 nest cavities. Eggs hatched asynchronously, yet nestlings fledged synchronously with similar body size and condition. There was evidence to support the incidence of extra-pair copulations, however, mitochondrial DNA sequence data are required to confirm the incidence of extra-pair fertilizations. Meyer’s Parrots had no preferences in regard to nest tree species beyond the incidence of suitable nest cavities, which are selected and further excavated to accommodate their non-random nest cavity preferences. There was a significant non-nesting Meyer’s Parrot population during the breeding season, likely due to this longlived cavity-nester delaying nesting until a suitable breeding territory becomes available. Meyer’s Parrots utilize communal roosts during summer and disperse from them according to the Foraging Dispersal Hypothesis. Due to the requirement to roost during the middle of the day to avoid heat stress, Meyer’s Parrots have bimodal flight and feeding activity patterns. The highest probability of locating Meyer’s Parrots is between 08h30 and 11h00 during summer when both adults are feeding on the seeds of fleshy-fruits in riverine forest communities. Due to the paucity of data on the current distribution and population status of Meyer’s Parrots and other African parrots, a continent-wide survey of all African parrots represents a conservation priority. Current deforestation rates in several Meyer’s Parrot range, their specialist habitat associations, and lack of evidence to support adaptability to a changing landscape mosaic necessitate the re-classification of Meyer’s Parrots as data deficient or nearthreatened. Based on low breeding population due to limited breeding opportunities, the CITES Appendix II wild-caught bird trade should also be halted until the sustainability of this trade has been evaluated and the relevant information made available. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2008.

Page generated in 0.0739 seconds