Spelling suggestions: "subject:"economical legumes"" "subject:"conomical legumes""
1 |
The competitive advantage of velvet beans as an economic agricultural commodity / Edward James Daniel de VilliersDe Villiers, Edward James Daniel January 2015 (has links)
The competitive advantage of velvet beans as an economic agricultural commodity. In the past 40 years, although food insecurity, poverty and environmental degradation persist, worldwide farmers have made considerable progress in increasing per capita food production whilst better understanding natural-resource management. Literature indicates that — in the decades to come — food demand will both grow and change for three reasons, namely increased numbers of people, increased income (people will have more purchasing power), and increased urbanisation (people will be more likely to adopt new diets containing animal protein and cereal). The world population is expected to increase to 8,9 billion by 2050, with 84% in the developing countries. Food insecurity and malnutrition are expected to persist despite progress on average per capita consumption of food.
As a complex system, and despite challenges, agriculture must produce simultaneously unprecedented abundance of food and unparalleled social concerns. As a business, agriculture requires high capital investments in land, facilities and production inputs; most often producing commodities of generally low unit value with thin profit margins, thereby forcing producers to strive for efficiency in all aspects of production. Therefore, it is of utmost importance that farmers should understand sustainable agriculture; where a more sustainable food-production system seeks to make the best use of nature’s goods and services whilst not being harmful to the environment. Sustainable agriculture should maximise the productivity of the land; should focus on locally adapted resource-conserving technologies which assist whole system redesign and large-scale adoption; and should aim to minimise the use of harmful non-renewable and fossil-fuel derived inputs.
Fertilisers have not replaced the function of organic matter and other management practices; but soil erosion and toxic waste rather did increase disproportionately along with increased agricultural production. This has led to a progressive decline in crop and land productivity as a result of soil degradation, water contamination, increasing problems of weed infestation, pests and diseases. Often the apparent absence of sustainable productive agricultural systems within the scope of commercial farmers is not because of the lack in technology or low yield potential of traditional varieties, but rather on account of the limited knowledge or lack of awareness on the part of farmers about sustainable production practices which function in harmony with their farming environment.
As one of the keys to success the velvet bean — which can grow almost everywhere — is an example of the introduction of a simple regenerative component into a farming system, as well as boosting the capacity of a farmer for local adaptation of the technology. Integrating the natural
processes of nutrient cycling, nitrogen fixation and introducing natural enemies of pests into food production processes can contribute to minimising environmental damage and/or health of the farmer and the consumer. Using the knowledge and skills of farmers helps to improve their self-reliance and to solve a common management problem, such as social- and human-capital management.
The velvet bean is seen as an answer to the agricultural problem of low nutrient supply to the staple crop of maize. The bean creates ground cover, regenerates, fertilises the soil, controls weeds and adds organic matter and nutrients. In arid South Africa the crop is one of the strongest defences of the farmer against the harmful effects of El Niño — with the bean protecting the soil, holding water and fertilising the land with its leaves. With the velvet bean farmers can grow their own organic and inexpensive fertilisers. Commercial fertilisers are becoming more and more expensive and their benefit is decreasing because of a degrading soil resource base.
Furthermore, the rise in production costs makes total reliance on inorganic fertilisers more uneconomical for most growers in the agricultural sector; making it imperative for researchers to come up with options which increase the efficient use of fertiliser, and also to identify other nutrient sources — such as legumes — that are not capital intensive. The velvet-bean technique is known to researchers and farmers worldwide for a considerable amount of time, but not in our country. As the technique becomes better known to South African farmers, it can be considered in a broader sense as a modern way to add nitrogen to the soil; benefitting, amongst others, the subsequent crop. The velvet-bean approach has a window of opportunity which can lead to higher yields in crop production, decline in labour costs, crop diversification, as well as agro-processing — all resulting in improved food security for South Africa.
Adopting the velvet bean into a production system can benefit a farmer, by achieving maize yields of 3 t/ha–4 t/ha (similar to yields normally obtained with recommended levels of fertilisation at 130 kg N/ha) without applied nitrogen fertiliser or input for weeding. Velvet beans, as an intercrop, can provide more than 100 kg N/ha to the following crop. However, literature shows a declining trend over time for all systems, which suggests that additional external inputs (probably P and K fertiliser) are required to achieve full sustainability. The adoption of the velvet bean in the South African maize industry would result in import savings of about 158 million tons of urea or about R591 billion/year.
Information presented in this mini-dissertation is considered to be the current state of knowledge on establishing, managing, and utilising the velvet bean as a legume in South Africa’s commodity
market; with the belief that it will expand the use of the bean, and will enhance the benefits from its use. / MBA, North-West University, Potchefstroom Campus, 2015
|
2 |
The competitive advantage of velvet beans as an economic agricultural commodity / Edward James Daniel de VilliersDe Villiers, Edward James Daniel January 2015 (has links)
The competitive advantage of velvet beans as an economic agricultural commodity. In the past 40 years, although food insecurity, poverty and environmental degradation persist, worldwide farmers have made considerable progress in increasing per capita food production whilst better understanding natural-resource management. Literature indicates that — in the decades to come — food demand will both grow and change for three reasons, namely increased numbers of people, increased income (people will have more purchasing power), and increased urbanisation (people will be more likely to adopt new diets containing animal protein and cereal). The world population is expected to increase to 8,9 billion by 2050, with 84% in the developing countries. Food insecurity and malnutrition are expected to persist despite progress on average per capita consumption of food.
As a complex system, and despite challenges, agriculture must produce simultaneously unprecedented abundance of food and unparalleled social concerns. As a business, agriculture requires high capital investments in land, facilities and production inputs; most often producing commodities of generally low unit value with thin profit margins, thereby forcing producers to strive for efficiency in all aspects of production. Therefore, it is of utmost importance that farmers should understand sustainable agriculture; where a more sustainable food-production system seeks to make the best use of nature’s goods and services whilst not being harmful to the environment. Sustainable agriculture should maximise the productivity of the land; should focus on locally adapted resource-conserving technologies which assist whole system redesign and large-scale adoption; and should aim to minimise the use of harmful non-renewable and fossil-fuel derived inputs.
Fertilisers have not replaced the function of organic matter and other management practices; but soil erosion and toxic waste rather did increase disproportionately along with increased agricultural production. This has led to a progressive decline in crop and land productivity as a result of soil degradation, water contamination, increasing problems of weed infestation, pests and diseases. Often the apparent absence of sustainable productive agricultural systems within the scope of commercial farmers is not because of the lack in technology or low yield potential of traditional varieties, but rather on account of the limited knowledge or lack of awareness on the part of farmers about sustainable production practices which function in harmony with their farming environment.
As one of the keys to success the velvet bean — which can grow almost everywhere — is an example of the introduction of a simple regenerative component into a farming system, as well as boosting the capacity of a farmer for local adaptation of the technology. Integrating the natural
processes of nutrient cycling, nitrogen fixation and introducing natural enemies of pests into food production processes can contribute to minimising environmental damage and/or health of the farmer and the consumer. Using the knowledge and skills of farmers helps to improve their self-reliance and to solve a common management problem, such as social- and human-capital management.
The velvet bean is seen as an answer to the agricultural problem of low nutrient supply to the staple crop of maize. The bean creates ground cover, regenerates, fertilises the soil, controls weeds and adds organic matter and nutrients. In arid South Africa the crop is one of the strongest defences of the farmer against the harmful effects of El Niño — with the bean protecting the soil, holding water and fertilising the land with its leaves. With the velvet bean farmers can grow their own organic and inexpensive fertilisers. Commercial fertilisers are becoming more and more expensive and their benefit is decreasing because of a degrading soil resource base.
Furthermore, the rise in production costs makes total reliance on inorganic fertilisers more uneconomical for most growers in the agricultural sector; making it imperative for researchers to come up with options which increase the efficient use of fertiliser, and also to identify other nutrient sources — such as legumes — that are not capital intensive. The velvet-bean technique is known to researchers and farmers worldwide for a considerable amount of time, but not in our country. As the technique becomes better known to South African farmers, it can be considered in a broader sense as a modern way to add nitrogen to the soil; benefitting, amongst others, the subsequent crop. The velvet-bean approach has a window of opportunity which can lead to higher yields in crop production, decline in labour costs, crop diversification, as well as agro-processing — all resulting in improved food security for South Africa.
Adopting the velvet bean into a production system can benefit a farmer, by achieving maize yields of 3 t/ha–4 t/ha (similar to yields normally obtained with recommended levels of fertilisation at 130 kg N/ha) without applied nitrogen fertiliser or input for weeding. Velvet beans, as an intercrop, can provide more than 100 kg N/ha to the following crop. However, literature shows a declining trend over time for all systems, which suggests that additional external inputs (probably P and K fertiliser) are required to achieve full sustainability. The adoption of the velvet bean in the South African maize industry would result in import savings of about 158 million tons of urea or about R591 billion/year.
Information presented in this mini-dissertation is considered to be the current state of knowledge on establishing, managing, and utilising the velvet bean as a legume in South Africa’s commodity
market; with the belief that it will expand the use of the bean, and will enhance the benefits from its use. / MBA, North-West University, Potchefstroom Campus, 2015
|
Page generated in 0.0457 seconds