• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chemical Compositions of Edamame Beans and Valorization of Edamame Shells

Yu, Dajun 23 January 2023 (has links)
Edamame is becoming more popular in the U.S. due to its high nutritional value and potential health benefits. However, more than 70% of edamame is imported from outside of the U.S. Therefore, developing elite edamame genotypes is critically desirable to increase the domestic production of edamame in the U.S. Genotype, planting location, and harvest time play essential roles in the chemical composition of edamame, which further decide edamame's nutritional value and sensory characteristics. Therefore, the first goal of this study is to comprehensively evaluate the chemical composition of edamame genotypes grown in different locations. Ten selected edamame genotypes were grown in three locations in the U.S. - Whitethorne, Virginia (VA), Little Rock, Arkansas (AR) and Painter, VA. Sugars, alanine, protein, oil, neutral detergent fiber (NDF), starch, ash, and moisture contents, were comprehensively analyzed. The results showed that location had significant effects on all chemical components of edamame with p < 0.05. Compared to Painter and Little Rock, genotypes planted in Whitethorne had higher averaged free sucrose, fructose, glucose, raffinose, stachyose, and starch contents and total sweetness. The highest crude protein and oil contents were found on edamame planted in Painter, while Little Rock produced edamame with the highest free alanine, ash, and moisture contents. Genotype significantly affected chemical compositions except for NDF and raffinose. Therefore, planting location and edamame genotype should be considered when producing elite edamame for the U.S. market. Chemical composition changes with the development of edamame; therefore, harvest time is essential for harvesting high-quality edamame. The second objective of this study is to quantify the changes in both physical and chemical properties of edamame over bean development and apply a combined spectroscopy and machine learning (ML) technique to help determine the optimal harvest time. Physical and chemical properties were analyzed for edamame harvested at R5 (beginning seed), R6 (full seed), and R7 (beginning maturity) growth stages, and the spectral reflectance (360 – 740 nm) of edamame pods was measured using a handheld spectrophotometer. The samples harvested at different stages were labeled as 'early,' 'ready,' and 'late.' At R6, pod/bean weight and pod thickness reached the peak and then stayed stable, while sugar, alanine, starch, and glycine also peaked at R6 but declined afterward. The spectra-based ML method had high accuracy (0.95) when classifying 'early' and 'late' edamame, and the accuracy was 0.87 for classifying 'early' and 'ready' edamame. These results indicated that this spectra-based ML method could determine the optimal harvest time of edamame. Food waste and loss not only lead to economic loss but also significant greenhouse gas emissions. With edamame food/snack production increasing, edamame shells, the low-value byproduct from this processing, will potentially threaten the environment. Similar to other food processing byproducts, edamame shell is rich in dietary fiber (DF). However, the high concentration of insoluble dietary fiber (IDF) limits its application as a food additive. Therefore, extraction/modification processes are needed to convert IDF to soluble dietary fiber (SDF) and improve the properties of edamame shell-derived DF. Ball milling is one of the most efficient techniques to break down biomaterials into sub-micro-level particles. Citric acid, as a natural and safe food additive, can help break down cell walls and improve the dissolution of SDF by ionizing the hydrogen ions with carboxyl groups. Therefore, the third objective of this study is to develop a process that combines ball milling and citric acid treatments to produce SDF from edamame shells. We investigated different treatment parameters, including different citric acid concentrations, treatment temperatures and time, and the application of ball milling. To determine if the combined treatment can potentially improve the properties of the produced SDFs, we characterized the physicochemical, morphological, structural, rheological, thermal, and functional properties of SDFs produced at different conditions. The results showed that the highest SDF yield (19.5%) was found when the edamame shells were pretreated by a ball mill. In addition, the combined citric acid and ball milling treatment altered several properties of the produced SDFs, including particle size, morphology, and crystallinity. Moreover, ball milling treatment led to a higher exothermic temperature peak of SDF indicating better thermal stability. All produced SDFs significantly elevated the production of short-chain fatty acids during in vitro fermentation (compared to the control fermentation) which indicated their potential benefits of promoting gut health. Overall, we demonstrated that ball-milling-assisted citric acid processing can be an effective green technique to produce SDF from edamame shells. The SDF produced from edamame shells can be regarded as a promising and novel ingredient with great potential to be used in foods. / Doctor of Philosophy / Edamame is becoming increasingly popular among consumers in the U.S. because it is nutritious and good for health. However, more than 70% of edamame in the U.S. market is imported from other countries. Therefore, having more edamame genotypes that adapt to the growing environment in the U.S. will help increase the domestic production of edamame. Genotype and planting location are essential in deciding edamame's nutritional value and taste. Therefore, the first objective of this study is to comprehensively understand the nutritional value of different edamame genotypes grown in three planting locations. The results showed that both location and genotype affected the nutritional values of edamame, indicating that planting location and edamame genotype should be considered when developing better edamame for the U.S. market. Nutritional value and sweetness change with the growth of edamame beans. Therefore, harvest time is crucial for harvesting edamame with better nutrition and taste. This study's second objective is to observe edamame's nutritional factors and sweetness over bean development and develop a method using a handheld colorimeter to help determine the optimal harvest time. The results showed that the edamame harvested at the full seed stage (called R6) is the sweetest compared to the other two stages. In addition, the handheld colorimeter combined with the machine learning technique showed high accuracy in separating 'early' and 'late' harvested edamame and 'early' and 'ready' harvested samples. These results indicated that the combination of colorimeter and machine learning could help determine the optimal harvest time of edamame. Food waste and loss not only lead to economic loss but also significant greenhouse gas emissions. Edamame shells, the low-value byproduct from edamame snack/food processing, will potentially threaten the environment if edamame consumption keeps increasing. Like other food waste, edamame shell is rich in dietary fiber (DF). Therefore, it is vital to find a way to recover the DF in edamame for other applications. Ball milling is a green technology that can efficiently break down big particles. Citric acid is a natural and safe food additive and can help break down insoluble cell walls. Therefore, this study aims to produce soluble dietary fiber (SDF) from edamame shells using ball milling and citric acid. We proved that ball-milling assisted acid processing can be an environmentally friendly method to produce edamame shell SDF which can potentially be used as a suitable food ingredient.

Page generated in 0.059 seconds