• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 17
  • 8
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 134
  • 34
  • 31
  • 31
  • 29
  • 22
  • 21
  • 20
  • 19
  • 15
  • 15
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Time-lapse acoustic imaging of oceanic fronts and eddies

Gunn, Kathryn Louise January 2019 (has links)
Seismic reflection surveying is used to generate acoustic images of the water column. This technique employs conventional multi-channel equipment which is used to image the solid Earth. In the water column, acoustic impedance contrasts are produced by variations in temperature and, to some extent, salinity. Acoustic impulses generated by an array of airguns suspended behind a vessel are reflected from these contrasts and recorded on long cables of hydrophones that are towed below the sea-surface. In this way, two- and three-dimensional images of thermohaline circulation can be generated. Critically, these images have equal vertical and horizontal resolutions of \textit{O}(10)~m. Here, I describe, process, and analyse a calibrated two-dimensional seismic survey from the Bellingshausen Sea of the Southern Ocean and a three-dimensional seismic survey from the Brazil-Falkland Confluence located offshore Uruguay. First, the Bellingshausen survey was designed to image the thermohaline structure across the west Antarctic shelf where warm-core eddies are reported. Processed and calibrated seismic images reveal the detailed thermohaline structure of Circumpolar Deep Water. Many warm-core eddies are observed, which have diameters of 1--12~km and thicknesses of 100--200~m. Pre-stack analysis demonstrates that this eddy field is being advected onto the shelf at speeds of \textit{O}(0.1)~m~s$^{-1}$. An iterative inverse modelling procedure is used to convert reflectivity into temperature and salinity, which confirms that the eddies have anomalously warm centres (i.e. $\sim$1$^{\circ}$C). These results have significant implications for ice shelf melting. Secondly, the Uruguay survey is used to investigate a large-scale frontal system. Although this system has been studied using hydrographic methods, these studies either have limited spatial resolution or have restricted depth penetration. The three-dimensional seismic survey, which was acquired in a `racetrack' pattern, permits the volume to be interrogated. Since the frontal system migrates southwestwards at a speed of \textit{O}(10)~km~day$^{-1}$, this survey is time-lapse in nature. Processed images reveal a band of dipping reflections that extend to depths of $\sim$2000~m. These reflections represent the frontal interface between the Brazil and Falkland currents. Physical oceanographic properties are calculated for images that cross this front. On the warm side of the front, the water mass is characterised by flat and continuous reflectivity. On the cold side of the front, the water mass is characterised by deformed reflectivity on all scales. Pre-stack analysis suggests that near-surface flow at the frontal interface is convergent. Between 0.5 and 1~km depth, a substantial eddy that is 30~km long and 250~m thick is visible on the cold side of the front. Detailed mapping suggests that this eddy grew and decayed over a period of 6~days. Its observed scale and duration are inconsistent with analytical and numerical studies of intra-thermocline eddies. Nevertheless, its duration is consistent with scaling arguments of frictional spin-down. Spatial and temporal distributions of mixing rates (i.e. diapycnal diffusivities) are estimated by spectrally analysing vertical displacements of automatically tracked reflections. Both internal wave and turbulent regimes are identifiable. Recovered diapycnal diffusivities are of \textit{O}($10^{-6}$--$10^{-2.2}$)~m$^{2}$~s$^{-1}$, consistent with hydrographically determined estimates. Mixing is suppressed and enhanced on the warm and cold sides of the front, respectively. Seismic Oceanography has considerable potential to quantify aspects of thermohaline circulation on multiple scales.
32

Turbulence prediction and measurement in a turbulent trailing vortex

Phillips, W. R. (William Robert) January 1974 (has links)
No description available.
33

The anatomy of hyperbolic trajectories in the Gulf of Mexico

Weed, Michael. January 2006 (has links)
Thesis (M.S.)--University of Delaware, 2006. / Principal faculty advisor: A.D. Kirwan, College of Marine and Earth Studies. Includes bibliographical references.
34

Microeddies as microfluidic elements : reactors and cell traps /

Lutz, Barry R. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 73-79).
35

Eddy dynamics of [beta] plumes /

Kida, Shinichiro. January 1900 (has links)
Thesis (M.S.)--Joint Program in Oceanography/ Applied Ocean Science and Engineering, Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution, 2003. / Includes bibliographical references (p. 81-84).
36

Large eddy simulation based turbulent flow-induced vibration of fully developed pipe flow /

Pittard, Matthew T. January 2003 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Mechanical Engineering, 2003. / Includes bibliographical references (103-106).
37

Study of the 'Poor Man's Navier Strokes' equation turbulence model

Bible, Stewart Andrew. January 2003 (has links) (PDF)
Thesis--University of Kentucky (M.S.), 2003. / Title from document title page. Document formatted into pages; contains ix, 110 p. : ill. Includes abstract and vita. Includes bibliographical references (p. 99-109).
38

Flow and pollutant dispersion over idealized urban street canyons using large-eddy simulation

Wong, Ching-chi, 黃精治 January 2013 (has links)
Flows and pollutant dispersion over flat rural terrain have been investigated for decades. However, our understanding of their behaviours over urban areas is rather limited. Most cases have either focused on street level or in the roughness sub-layer (RSL) of urban boundary layer (UBL). Whereas, only a handful of studies have looked into the coupling between street-level and UBL-core dynamics, and their effects on pollutant dispersion. In this thesis, computational fluid dynamics (CFD) is employed to examine the flows and pollutant transport in and over urban roughness. Idealised two-dimensional (2D) street canyons are used as the basic units fabricating hypothetical urban surfaces. A ground-level passive and chemically inert pollutant source is applied to simulate the flows and pollutant dispersion over rough surfaces in isothermal condition. Large-eddy simulation (LES) with the one-equation subgrid-scale model is used to solve explicitly the broad range of scales in turbulent flows. Arrays of idealized street canyons of both uniform and non-uniform building height are used to formulate a unified theory for the flows and pollutant dispersion over urban areas of different morphology. The geometry of roughness elements is controlled by the building-height-to-street-width (aspect) ratio (0.083 ≤ AR ≤ 2) and/or the building height variability (BHV = 0.2, 0.4 and 0.6), in which the characteristic regimes of skimming flow, wake-interference and isolated roughness are covered. A detailed analysis on the roof-level turbulence structure reveals parcels of low-speed air masses in the streamwise flows and narrow high-speed down-drafts in the urban canopy layer, signifying the momentum entrainment into the street canyons. The decelerating streamwise flows in turn initiate up-drafts carrying pollutants away from the street canyons, illustrating the basic pollutant removal mechanism in 2D street canyons. Turbulent transport processes, in the form of ejection and sweep, are the key events governing the exchanges of air and pollutant of street canyon. Air exchange rate (ACH) along the roof level is dominated by turbulent transport, in particular over narrow street canyons. The LES results show that both the turbulence level and ACH increase with increasing aerodynamic resistance defined in term of the Fanning friction factor. At the same AR, BHV greatly increases the friction factor and the ACH in dense built areas (AR ≤ 0.25). The turbulence intensity is peaked on the windward side of street canyons that does not overlap with the maximum velocity gradient near the leeward building corners, suggesting the importance of background turbulence in street-level ventilation. Over the building roughness, pollutant plume dispersion after the ground-level area source in cross flows resumes the self-similar Gaussian shape in the vertical direction in which the vertical plume coverage is proportional to the square root of downwind distance in the streamwise direction. Moreover, the vertical dispersion coefficient is proportional to the one-fourth power of friction factor over idealised street canyons. Conclusively, friction factor can be used to parametrise ventilation and pollutant dispersion over urban areas. / published_or_final_version / Mechanical Engineering / Doctoral / Doctor of Philosophy
39

Numerical simulation of fast reactions in turbulent liquids

Nafia, Noureddine 12 1900 (has links)
No description available.
40

A new dynamic subgrid-scale model for large-eddy simulation of turbulent flows

Kim, Won-Wook 12 1900 (has links)
No description available.

Page generated in 0.0543 seconds