• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 96
  • 96
  • 31
  • 28
  • 24
  • 21
  • 17
  • 16
  • 14
  • 14
  • 11
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A System for Detecting the Position of a Molten Aluminum Metal-Front within a Precision Sand Mold

Foley, Brian M. 10 January 2009 (has links)
Manufacturers of cast metal parts are interested in the development of a feedback control system for use with the Precision Sand-Casting (PSC) process. As industry demands the ability to cast more complex geometries, there are a variety of challenges that engineers have to address. Certain characteristics of the mold, such as thick-to-thin transitions, extensive horizontal or flat surfaces, and sharp corners increase the likelihood of generating defective casts due to the turbulent metal-flow during fills. Consequently, it is critical that turbulent flow behavior within the mold be minimized as much as possible. One way to enhance the quality of the fill process is to adjust the flow rate of the molten metal as it fills these critical regions of the mold. Existing systems attempt to predict the position of the metal level based on elapsed time from the beginning of the fill stage. Unfortunately, variability in several aspects of the fill process makes it very difficult to consistently predict the position of the metal front. A better approach would be to embed a sensor that can detect the melt through a lift-off distance and determine the position of the metal-front. The information from this sensor can then be used to adjust the flow rate of the aluminum as the mold is filled. This thesis presents the design of a novel non-invasive sensor monitoring system. When deployed on the factory floor, the sensing system will provide all necessary information to allow process engineers to adjust the metal flow-rate within the mold and thereby reduce the amount of scrap being produced. Moreover, the system will exhibit additional value in the research and development of future mold designs.
22

Spectrally correct finite element analysis of electromagnetic fields

Pinchuk, Amy Ruth January 1988 (has links)
Direct solution for three dimensional electric or magnetic field vectors throughout the frequency spectrum is accomplished by a finite element formulation which includes displacement and conduction currents, and requires no special treatment for material interfaces. Analysis of bus bar and Bath cube eddy current problems demonstrate the capabilities of the method. / Spurious components in solutions to vector field problems are shown to corrupt deterministic solutions. These corruptions are identifiable with spurious modes familiar to high frequency modal analysis. Spectrally correct mixed order finite elements are demonstrated to retrieve accuracy in deterministic analyses. / The formulation may be limited by computer round-off at matrix assembly which affects the solenoidality of vector fields. Furthermore, extreme values encountered in low frequency eddy current analysis lead to ill conditioning and unreliable solutions. These numerical instabilities are overcome by parametric adjustment of permittivities. Error estimates are established to monitor inaccuracies introduced by permittivity adjustment.
23

Advanced modelling for on-line monitoring of structural integrity /

Isterling, William Martin. Unknown Date (has links)
Thesis (M.Eng.)--University of South Australia, 1998.
24

A multi-coil magnetostrictive actuator

Wilson, Thomas Lawler. January 2009 (has links)
Thesis (M. S.)--Mechanical Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Zinn, Ben T.; Committee Member: Book, Wayne; Committee Member: Glezer, Ari; Committee Member: Neumeier, Yedidia; Committee Member: Seitzman, Jerry.
25

Magnetic resonance image distortions due to artificial macroscopic objects:an example: correction of image distortion caused by an artificial hip prosthesis

Koivula, A. (Antero) 27 November 2002 (has links)
Abstract Eddy currents and susceptibility differences are the most important sources that interfere with the quality of MR images in the presence of an artificial macroscopic object in the volume to be imaged. In this study, both of these factors have been examined. The findings show that the RF field is the most important cause of induced eddy currents when gradients with relatively slow slew rates are used. The induced eddy currents amplify or dampen the RF field with the result that the flip angle changes. At the proximal end in the vicinity of the hip prosthesis surface, there have been areas where the flip angle is nearly threefold compared to the reference flip angle. Areas with decreased flip angles have also been found near the surface of the prosthesis top. The incompleteness of the image due to eddy currents manifests as signal loss areas. Two different methods based on MRI were developed to estimate the susceptibility of a cylindrical object. One of them is based on geometrical distortions in SE magnitude images, while the other takes advantage of phase differences in GRE phase images. The estimate value of the Profile™ test hip prosthesis is χ = (170 ± 13) 10-6. A remapping method was selected to correct susceptibility image distortions. Correction was accomplished with pixel shifts in the frequency domain. The magnetic field distortions were measured using GRE phase images. The method was tested by simulations and by imaging a hip prosthesis in a water tank and in a human pelvis. The main limitations of the method described here are the loss of a single-valued correction map with higher susceptibility differences and the problems with phase unwrapping in phase images. Modulation transfer functions (MTF) were exploited to assess the effect of correction procedure. The corrected image of a prosthesis in a human hip after total hip arthroplasty appears to be equally sharp or slightly sharper than the corresponding original images. The computer programs written for this study are presented in an appendix.
26

Eddy-current testing modeling of axisymmetric pieces with discontinuities along the axis by means of an integral equation approach / Modélisation du CND par courants de Foucault des pièces cylindriques avec des discontinuités axiales à l’aide d’une formulation intégrale dédiée

Pipis, Konstantinos 27 November 2015 (has links)
Le contrôle non destructif (CND) de pièces pour des applications dans l'industrie a mené au besoin de modèles rapides et précises. Tels modèles servent au développement des méthodes d'inspection, à l'optimisation des capteurs utilisés aux essais, à l'évaluation des courbes de Probabilité de Detection (POD) ainsi qu'à la caractérisation de défauts. Cette thèse se focalise au CND par Courants de Foucault (CF) de pièces cylindriques avec des discontinuités selon z et contenant un défaut fin. Un modèle pour l'inspection de telles pièces a été développé afin de traiter des applications comme l'inspection des pièces alésées trouvées en aéronautique et des tubes des générateurs de vapeur utilisés dans l'industrie nucléaire. Ce modèle est basé sur une formulation d'équation intégrale. Plus précisément, la variation de l'impédance du capteur, dit signal CF, est calculée à partir d'une équation intégrale sur la surface du défaut. La formulation suivie est basée sur la méthode d'intégration surfacique (SIM). Cette formulation nécessite, d'un côté, le calcul du champ électrique en absence du défaut et, de l'autre côté, l'expression d'une fonction de Green qui correspond à la géométrie de la pièce sans défaut. Les deux problèmes électromagnétiques sont résolus en utilisant la méthode Truncation Region Eigenfunction Expansion (TREE). La méthode TREE est un outil performant pour la résolution des problèmes électromagnétiques qui prend en compte la décroissance rapide de l'intensité du champ afin de tronquer le domaine d'intérêt à une distance, où le champ est négligeable.Le modèle est validé en comparant le signal CF calculé avec des résultats obtenues par une approche combinant la méthode d'intégration volumique (VIM) et SIM, dite l'approche VIM-SIM (implémentée dans la plateforme CIVA) ainsi qu'avec le modèle d'éléments finis (FEM). Nous avons traité trois configurations différentes : un demi-espace conducteur alésé avec un défaut fin, une plaque conductrice avec un alésage et un défaut, et un tube semi-infini avec un défaut fin à la proximité de son bord. La comparaison des résultats montre un très bon accord entre les trois modèles. Le temps de calcul avec le modèle SIM est considérablement inférieur aux temps de calcul des autres modèles. En outre, le modèle SIM donne la possibilité d'effectuer le balayage du capteur dans le tube ou l'alésage dans le cas des pièces alésées. / Nondestructive Testing (NDT) of parts for industrial applications such as in nuclear and aeronautical industry has led to the need for fast and precise models. Such models are useful for the development of the inspection methods, the optimisation of probes, the evaluation of the Probability of Detection (POD) curves or for the flaw characterisation.This PhD thesis focuses on the eddy-current NDT of layered cylindrical pieces with discontinuities in the z direction and containing a narrow crack. A model for the inspection of such pieces is developed in order to be applied on the inspection of fastener holes met in aeronautics and of steam generator tubes in nuclear sector.The model is based on an integral equation formalism. More precisely, for the calculation of the impedance change one needs to solve an integral equation over the surface of the narrow crack, which is represented by a surface electric dipole distribution. This is the method known as surface integration method (SIM). This formulation requires, on the one hand, the calculation of the electric field in the absence of the flaw, the so-called primary field, and, on the other hand, the Green's function expression corresponding to the geometry of the flawless piece. Both electromagnetic problems are solved by means of the Truncation Region Eigenfunction Expansion (TREE) method. The TREE method is a powerful tool for the solution of electromagnetic problems which uses the rapid decrease of the field in order to truncate the region of interest at a distance where the field is negligible.The model is validated by comparing the results of the coil impedance variation with those obtained by an approach that combines the volume integral method (VIM) with SIM, known as VIM-SIM method, implemented in the commercial software CIVA and the finite element method (FEM) implementation in COMSOL software. Three different configurations have treated. The more general geometry of a conducting half-space with a borehole, a conducting plate with a borehole and a crack and a conducting semi-infinite tube with a crack near the edge. The results of the three models show good agreement between them. The computational time of the SIM model is significantly lower compared to previous models. Furthermore, another advantage of the SIM model is that it provides the possibility of a scan inside the borehole.
27

A Computationally Economic Three Dimensional Magnetic Modelling System

Mishra, Munna 06 1900 (has links)
No description available.
28

Spectrally correct finite element analysis of electromagnetic fields

Pinchuk, Amy Ruth January 1988 (has links)
No description available.
29

Reducing Eddy Currents In High Magnetic Field Environments

Case, Russell 01 January 2008 (has links)
When an electrical conducting volume is placed into the bore of an MRI undergoing an image scan, time varying magnetic gradients induce eddy currents in this conducting material. These eddy currents in turn produce a mechanical torque on this volume. It is the goal of this thesis to produce a computer simulation of eddy currents produced by placing conducting materials inside an MRI bore. The first part of the thesis establishes the physics and principles behind an MRI system along with several applications. Next, this thesis presents an analysis of eddy current effects produced on a conductor placed into an MRI bore. The design and construction of simulated MRI magnetic fields is then presented along with a study of simulated eddy currents in various test conducting volumes of selected materials. Finally, techniques are discussed for reducing eddy currents in these conducting volumes and materials, along with simulation results showing the reduction in the applied eddy current. The findings of this thesis are summarized in the conclusions and recommendations are made for modification and future applications of these techniques and simulations.
30

Nonlinear analysis of eddy-current couplings in feedback control systems

Carlen, Eric Theodore January 1966 (has links)
A nonlinear analysis is developed for eddy-current couplings in feedback control systems. The analysis makes use of the describing function method to predict transient response. Effects of the nonlinearity are discussed and backed with an analog computer study. Conclusions arrived at show the absquare nonlinearity to be advantageous under conditions of zero steady state loading or offset. Under conditions of steady state loading, shifting of the load operating point causes a wide variation in response. This situation is remedied with nonlinear compensation. / Master of Science

Page generated in 0.0541 seconds