• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Comparative Study Of Evolutionary Network Design

Kalkan, Sinan 01 December 2003 (has links) (PDF)
In network design, a communication network is optimized for a given set of parameters like cost, reliability and delay. This study analyzes network design problem using Genetic Algorithms in detail and makes comparison of different approaches and representations. Encoding of a problem is one of the most crucial design choices in Genetic Algorithms. For network design problem, this study compares adjacency matrix representation with list of edges representation. Also, another problem is defining a fair fitness function that will not favor one optimization parameter to the other. Multi-objective optimization is a recommended solution for such problems. This study describes and compares some of those approaches for different combinations in network design problem.
2

Zpracování signálů z moderních mikroskopů pro lokální charakterizaci materiálů / Processing of modern microscope signals for local material characterization

Kaspar, Pavel January 2013 (has links)
Signal processing from modern microscopes for local characteristics of materials Image processing is more and more important for the advancement of image evaluation taken from microscopes. This thesis engages the problem of artefact detection and removal from images taken by electron microscope, more accurately by low energy electron microscopy (LEEM). It then offers a possible course of processing such images by edge detection and its theoretical use. These operations are all made in MatLAB language.
3

Relational Representation Learning Incorporating Textual Communication for Social Networks

Yi-Yu Lai (10157291) 01 March 2021 (has links)
<div>Representation learning (RL) for social networks facilitates real-world tasks such as visualization, link prediction and friend recommendation. Many methods have been proposed in this area to learn continuous low-dimensional embedding of nodes, edges or relations in social and information networks. However, most previous network RL methods neglect social signals, such as textual communication between users (nodes). Unlike more typical binary features on edges, such as post likes and retweet actions, social signals are more varied and contain ambiguous information. This makes it more challenging to incorporate them into RL methods, but the ability to quantify social signals should allow RL methods to better capture the implicit relationships among real people in social networks. Second, most previous work in network RL has focused on learning from homogeneous networks (i.e., single type of node, edge, role, and direction) and thus, most existing RL methods cannot capture the heterogeneous nature of relationships in social networks. Based on these identified gaps, this thesis aims to study the feasibility of incorporating heterogeneous information, e.g., texts, attributes, multiple relations and edge types (directions), to learn more accurate, fine-grained network representations. </div><div> </div><div>In this dissertation, we discuss a preliminary study and outline three major works that aim to incorporate textual interactions to improve relational representation learning. The preliminary study learns a joint representation that captures the textual similarity in content between interacting nodes. The promising results motivate us to pursue broader research on using social signals for representation learning. The first major component aims to learn explicit node and relation embeddings in social networks. Traditional knowledge graph (KG) completion models learn latent representations of entities and relations by interpreting them as translations operating on the embedding of the entities. However, existing approaches do not consider textual communications between users, which contain valuable information to provide meaning and context for social relationships. We propose a novel approach that incorporates textual interactions between each pair of users to improve representation learning of both users and relationships. The second major component focuses on analyzing how users interact with each other via natural language content. Although the data is interconnected and dependent, previous research has primarily focused on modeling the social network behavior separately from the textual content. In this work, we model the data in a holistic way, taking into account the connections between the social behavior of users and the content generated when they interact, by learning a joint embedding over user characteristics and user language. In the third major component, we consider the task of learning edge representations in social networks. Edge representations are especially beneficial as we need to describe or explain the relationships, activities, and interactions among users. However, previous work in this area lack well-defined edge representations and ignore the relational signals over multiple views of social networks, which typically contain multi-view contexts (due to multiple edge types) that need to be considered when learning the representation. We propose a new methodology that captures asymmetry in multiple views by learning well-defined edge representations and incorporates textual communications to identify multiple sources of social signals that moderate the impact of different views between users.</div>

Page generated in 0.1419 seconds