• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Determination of Surface Free Energies and Aspect Ratio of Talc

Lobato, Emilio Marcus de Castro 23 November 2004 (has links)
Microcalorimetric measurements and contact angle measurements were conducted to assess the surface chemistry of the mineral talc. The contact angles were performed on both flat and powdered samples and the results were used to determine the surface free energy components and parameters (SFEC) using the acid-base theory for solids, according to the van Oss-Chaudhury-Good approach. It was found that the surface hydrophobicity of talc increases with decreasing particle size up to a limit after which hydrophilicity (polarity) increases. The increase in hydrophobicity was attributed to the increase of the delamination of the lamellar talc particles. Delamination is a comminution mechanism that preferentially exposes talc's hydrophobic basal planes, while fracture is another mechanism that breaks the lamellae, rupturing covalent bonds thus exposing more hydrophilic edge surfaces. The decrease in hydrophobicity, beyond a given particle size, could be related to the prevail of fracture over delamination during grinding which generated more hydrophilic edge surfaces. The flow microcalorymetry combined with thin layer wicking allowed the separate estimation of the SFEC at the basal plane and edge surfaces of talc. The results suggested that the basal surface of talc is monopolar basic, while the edge surface is monopolar acidic, which are in agreement with the crystal structure of the mineral. The combination of two particle size distribution techniques, which are based on different physical principles, permitted the quantitative determination of the aspect ratio of highly anisometric particles, such as talc. The same trend obtained using flow microcalorimetry was observed for the evolution of the aspect ratio as a function of particle fineness, i.e. the fracture prevails over delamination after achieving a maximum aspect ratio value of about 35. The agreement between two distinct methods was considered rather encouraging. / Master of Science
2

Rauheitsuntersuchungen an Glaskanten mittels konfokalem Laserscanning-Mikroskop

Bukieda, Paulina, Weller, Bernhard 22 February 2024 (has links)
Untersuchungen zur Kantenfestigkeit von Gläsern zeigen, dass diese in Abhängigkeit des Herstellers und der Kantenbearbeitungsart nach DIN 1249-11 stark variiert. Insbesondere der Bearbeitungsprozess des Schleifens weist eine Vielzahl von Parametern auf, welche die resultierende Oberflächenbeschaffenheit der Glaskante beeinflussen, allerdings noch unzureichend untersucht sind. Eine objektive Erfassung der Oberflächenbeschaffenheit über Kennwerte der Rauheit könnte helfen, Prozessparameter bewertbar zu machen und eine Korrelation zwischen dem Bearbeitungsprozess und der Kantenfestigkeit zu schaffen. Im Rahmen einer ersten Vorstudie wurden Rauheitskennwerte geschliffener und polierter Kantenoberflächen von drei Herstellern mittels konfokalem Laserscanning-Mikroskop ermittelt und hinsichtlich ihrer Eignung zur Bewertung der Bearbeitungsprozesse geprüft. / Roughness examination of processed glass edges under a confocal laser scanning microscope. Findings on the edge strength show that, it varies depending on the manufacturer and the type of edge finishing. In particular the grinding process has a large number of parameters that influence the surface quality of the glass edge, which have not yet been fully investigated. The determination of objective roughness parameters could help to evaluate the grinding processes and further correlate the surface quality with the edge strength. Within the scope of a preliminary study, roughness parameters were calculated for ground and polished glass edges of three manufacturers using a confocal laser scanning microscope. Finally the method was tested regarding to its suitability for a determination of characteristic roughness parameters that could be used to evaluate the grinding processes.
3

Surface Free Energy Characterization of Powders

Yildirim, Ismail 07 May 2001 (has links)
Microcalorimetric measurements and contact angle measurements were conducted to study the surface chemistry of powdered minerals. The contact angle measurements were conducted on both flat and powdered talc samples, and the results were used to determine the surface free energy components using Van Oss-Chaudhury-Good (OCG) equation. It was found that the surface hydrophobicity of talc increases with decreasing particle size. At the same time, both the Lifshitz-van der Waals (gSLW) and the Lewis acid-base (gSAB) components (and, hence, the total surface free energy (gS)) decrease with decreasing particle size. The increase in the surface hydrophobicity and the decrease in surface free energy (gS) can be attributed to preferential breakage of the mineral along the basal plane, resulting in the exposure of more basal plane surfaces to the aqueous phase. Heats of immersion measurements were conducted using a flow microcalorimeter on a number of powdered talc samples. The results were then used to calculate the contact angles using a rigorous thermodynamic relation. The measured heat of immersion values in water and calculated contact angles showed that the surface hydrophobicity of talc samples increase with decreasing particle size, which agrees with the direct contact angle measurements. A relationship between advancing water contact angle qa, and the heat of immersion (-DHi) and surface free energies was established. It was found that the value of -DHi decrease as qa increases. The microcalorimetric and direct contact angle measurements showed that acid-base interactions play a crucial role in the interaction between talc and liquid. Using the Van Oss-Chaudhury-Good's surface free energy components model, various talc powders were characterized in terms of their acidic and basic properties. It was found that the magnitude of the Lewis electron donor, gS-, and the Lewis electron acceptor, gS+, components of surface free energy is directly related to the particle size. The gS- of talc surface increased with decreasing particle size, while the gS+ slightly decreased. It was also found that the Lewis electron-donor component on talc surface is much higher than the Lewis electron-acceptor component, suggesting that the basal surface of talc is basic. The heats of adsorption of butanol on various talc samples from n-heptane solution were also determined using a flow microcalorimeter. The heats of adsorption values were used to estimate % hydrophilicity and hydrophobicity and the areal ratios of the various talc samples. In addition, contact angle and heat of butanol adsorption measurements were conducted on a run-of-mine talc sample that has been ground to two different particle size fractions, i.e., d50=12.5 mm and d50=3.0 mm, respectively. The results were used to estimate the surface free energy components at the basal and edge surfaces of talc. It was found that the total surface free energy (gS) at the basal plane surface of talc is much lower than the total surface free energy at the edge surface. The results suggest also that the basal surface of talc is monopolar basic, while the edge surface is monopolar acidic. The results explain why the basicity of talc surface increases with decreasing particle size as shown in the contact angle and microcalorimetric measurements. Furthermore, the effects of the surface free energies of solids during separation from each other by flotation and selective flocculation were studied. In the present work, a kaolin clay sample from east Georgia was used for the beneficiation tests. First, the crude kaolin was subjected to flotation and selective flocculation experiments to remove discoloring impurities (i.e., anatase (TiO2) and iron oxides) and produce high-brightness clay with GE brightness higher than 90%. The results showed that a clay product with +90% brightness could be obtained with recoveries (or yields) higher than 80% using selective flocculation technique. It was also found that a proper control of surface hydrophobicity of anatase is crucially important for a successful flotation and selective flocculation process. Heats of immersion, heats of adsorption and contact angle measurements were conducted on pure anatase surface to determine the changes in the surface free energies as a function of the surfactant dosage (e.g. hydroxamate) used for the surface treatment. The results showed that the magnitude of the contact angle and, hence, the surface free energy and its components on anatase surface varies significantly with the amount of surfactant used for the surface treatment. / Ph. D.

Page generated in 0.0449 seconds