• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 2
  • 1
  • Tagged with
  • 29
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The ichthyofauna associated with Taylor's salt marsh, Kariega estuary (Eastern Cape), South Africa /

Booth, Tara Loren. January 2007 (has links)
Thesis (M.Sc. (Zoology & Entomology)) - Rhodes University, 2009.
12

Predation-risk in juvenile Atlantic cod with respect to eelgrass patch characteristics in Newman Sound, Bonavista Bay, Newfoundland /

Gorman, Ann Marie, January 2004 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2004. / Bibliography: leaves 74-85.
13

Long-term spatial-temporal eelgrass (Zostera marina) habitat change (1932-2016) in the Salish Sea using historic aerial photography and unmanned aerial vehicle

Nahirnick, Natasha K. 18 May 2018 (has links)
Eelgrass (Zostera marina) is a critical nearshore marine habitat for juvenile Pacific salmon (Oncorhynchus spp.) as they depart from their natal streams. Given the poor marine survival of Coho (O. kisutch) and Chinook (O. tshawytscha) salmon juveniles in recent decades, it is hypothesized that deteriorating eelgrass habitats could contribute to their low survival. The primary goal of this research was to investigate the possible long-term spatial-temporal trends in eelgrass habitat in the Salish Sea and was addressed by two main objectives: (1) Define a methodology for mapping eelgrass habitats using UAV imagery to create a baseline for long-term mapping; and (2) Assess changes in eelgrass area coverage and fragmentation over the period of 1932-2016 using historic aerial photographs and Unmanned Aerial Vehicle (UAV) imagery, and assess the relationship between eelgrass and residential housing density and shoreline activities. Three study sites in the Southern Gulf Islands of the Salish Sea were chosen for analysis. The overall accuracies of eelgrass delineation from UAV imagery were 95.3%, 88.9%, and 90.1% for Village Bay, Horton Bay, and Lyall Harbour, respectively. The UAV method was found to be highly effective for this size of study site, however results were impacted by the environmental conditions at the time of acquisition, namely: sun angle, tidal height, cloud cover, water clarity, and wind speed. The results from the first objective were incorporated into a long-term dataset of historic aerial photography and used to evaluate changes in eelgrass area and fragmentation. All three eelgrass meadows showed a deteriorating trend in eelgrass condition. On average, eelgrass area coverage decreases by 41% while meadow complexity as indicated by the shape index increases by 76%. Shoreline activities (boats, docks, log booms, and shoreline armouring) and residential housing density increased markedly at all sites over the study period. By using a linear correlation model, it was revealed that eelgrass areal coverage and fragmentation (Shape Index) were, in general, very strongly correlated to these landscape-level coastal environmental indicators. While this correlation model is not meant to show a direct causative impact on eelgrass at these sites, these results suggest an overall deterioration of coastal environmental health in the Salish Sea due to a dramatic increase in the use of the coastal zone, as well as likely declines in water quality due to urbanization. / Graduate
14

Miljöbedömning : Miljökonsekvensbeskrivning för prövning av muddring i Natura 2000-området Nordre älvsestuarium

Olsson, Therese January 2014 (has links)
Nordre älv är ett av två utflöden från Sveriges största vattendrag Göta älv. Estuariet som består av älvens mynning och en del av skärgården, är speciellt med blandning av sött och salt vatten och är utpekat till bland annat Natura 2000-område. I framtiden är det ett möjligt scenario att flytta delar av sjötrafiken som idag går i Göta älv genom Göteborg, till Nordre älv istället. Förutsättningarna för sjötrafiken genom Göteborg förändras i takt med att staden utvecklas och förväntade havsnivåhöjningar kan fordra större skyddsåtgärder för staden i framtiden. Här spelar både samhälls-, ekonomi- och miljöaspekter roll och en sammanvägning av konsekvenser behöver göras. Eftersom tröskelområdet i Nordre älvs mynning är mycket grunt behöver i så fall muddring utföras. Det är ett fysiskt ingrepp där bottensediment tas bort för att skapa en djupare ränna där fartyg kan passera. För ett sådant ingrepp krävs tillståndsansökan samt en miljökonsekvensbeskrivning som beskriver direkta och indirekta effekter på miljö och människa. Denna rapport är en förstudie med inspiration av miljökonsekvensbeskrivning där effekter av muddring i Nordre älvs estuarium studeras. Litteraturstudien bygger på publikationer från myndigheter och organisationer, vetenskapliga artiklar samt personlig kommunikation med berörda och sakkunniga.I estuariet finns ålgräsäng som är ett viktigt habitat för födosök och som barnkammare för många arter. Lax och öring vandrar upp genom älven för att leka och ål som är rödlistad förekommer i området. Den största effekten av muddringen är direkt borttagande av vegetation och fauna. Andra effekter som kan få stor påverkan är grumling (kortsiktigt) och förändrad hydrodynamik. Ålgräsets omfattning kommer minska men det är förhoppningsvis möjligt att genom kompensationsåtgärder öka ålgräsutbredningen utanför muddringsrännan och därigenom motverka negativ nettoeffekt. Stor tyngd bör läggas på val av tidpunkt. Under sommaren då fortplantning sker är ekosystemet mest känsligt mot störningar. Men genom god planering med åtgärder för att minska påverkan samt noga val av teknik och utrustning kan negativa miljöeffekter begränsas.För att kunna utvärdera miljöeffekterna i ett större perspektiv behöver ytterligare studier göras i och kring Göteborg för att utvärdera vilka positiva och negativa effekter som uppstår av att flytta sjöfarten och andra framtida projekt. / The Nordre älv estuary is the largest of its kind in Sweden with the typical fresh and salt water mix. It contains eelgrass which is an important habitat for many organisms as feeding ground and nursery area. The estuary is protected by several different directives, laws and conventions, such as: nature reserve and Natura 2000 according to the Habitats Directive and Birds Directive issued by the EU. Because of changed conditions for marine traffic through Gothenburg it may be necessary to relocate it to the river Nordre älv in the future. That would require a dredging since the river mouth contains a shallow threshold. An environmental impact assessment (EIA) is required as part of the permit application for dredging. This essay is a literature review inspired by EIA based on publications from agencies and organizations, research, scientific articles and personal communication with experts. The major effect of dredging is directly removal of vegetation and fauna. Other effects that may have significant impact is clouding (short term) and altered hydrodynamics. Eelgrass extent will decrease but might be offset by compensational measures. Through proper planning and precautions it’s possible to reduce negative environmental impacts.
15

Monitoring environmental impacts of recreational boat anchoring on eelgrass (Zostera marina L.) and benthic invertebrates in the Gulf Islands National Park Reserve of Canada

Leatherbarrow, Kate Elizabeth January 2006 (has links)
The goal of this study was to characterize the ecology and recreational boating activity at two popular anchoring sites located in the waters of the Gulf Islands National Park Reserve of Canada (Sidney Spit and Tumbo Island). The three components of the study were to characterize the distribution of eelgrass (Zostera marina L.). build an inventory of anchoring/mooring activity, and characterize the benthic infauna at each site. These observations were used to evaluate the impact of anchoring on the eelgrass and invertebrate communities. No visible loss of eelgrass was documented, but the results at one of the two sites support the hypothesis that benthic communities in high anchoring intensity areas are in poorer health than those in low anchoring intensity or mooring areas, a characteristic of communities residing in disturbed and fragmented eelgrass beds. Recommendations for site management and long-term monitoring are proposed based on these results.
16

Community metabolism and phosphorus dynamics in a seasonally closed South African estuary

Liptrot, Mark Robert Michael January 1978 (has links)
The effects of seawater inflows and macrophyte beds on community metabolism and phosphorus dynamics in the seasonally-closed Swartvlei estuary were investigated. Metabolic rates were determined by diurnal oxygen curve analysis. Gross primary production ranged from 0,7 to 14,9 g 0₂ m⁻² day⁻¹, and respiration from 0,9 to 25,2 g 0₂ m⁻² day⁻¹. The highest production rates were recorded inside the dense beds of Zostera capens is Setchell (x- = 7,8 g 0₂ m⁻² day⁻¹ ). Metabolism was positively correlated to submersed macrophyte cover, and decreased upstream of the mouth region. No seasonal variation in gross production could be detected, and mouth closure had no detectable effect on metabolic rates. Growth of the green alga Enteromorpha sp. in winter, and the effect of decay of this alga on dissolved oxygen, total inorganic carbon and total dissolved phosphorus in the water column is discussed. High day-time respiration values, measured in a darkened polythene enclosure, indicate that photorespiration occurs in Zostera. Apparently the annual amount of oxygen respired throughout the estuary exceeded that produced by 2 7100 tonnes, i.e. the estuary was heterotrophic. This is discussed in relation to the effectiveness of the diurnal curve method as a way of measuring metabolic rates, and to the possibility of organic matter input via river inflows. There is a net gain of up to 17,4 kg of particulate phosphorus over mean tides. Diurnal phosphorus studies indicate that Zostera releases phosphate into the water column in the light. Enteromorpha takes up phosphate in the morning, which it appears to release over the rest of the day. The cycling of phosphorus between seawater, sediments, macrophytes and the water column is discussed.
17

Seed and seedling dynamics of the seagrass, Zostera japonica Aschers. and Graebn. and the influence of Zostera marina L.

Nielsen, Michele Erin January 1990 (has links)
The seagrass Zostera japonica Aschers. and Graebn. occurs as pure populations and in mixture with Zostera marina L. along the intertidal regions of southwest British Columbia. At the Roberts Bank study area seed and seedling dynamics were studied in three vegetation zones: a landward monospecific zone of Z. japonica, a zone of co-existing Z. japonica and Z. marina, and a seaward monospecific zone of Z. marina. Many more seeds were produced than were found in the sediment, and even fewer germinated. Zostera japonica seeds were most abundant in the seed bank in the upper zones where there is high Z. japonica density. Even though seeds remained in the water column for up to two months, very few seeds dispersed into the lower zone populated by Z. marina. thus limiting Z. japonica's colonization of the lower zones. It is unclear what limits the dispersal of Z. japonica seeds. Of the seeds that were incorporated into the sediment few germinated (5% or less). When seeds were planted in buckets placed into the sediment, with and without Z. marina, Z. japonica was able to germinate, grow, and reproduce in one year throughout the study area. Seedlings that emerged earliest (in April) either did not establish or did not survive as long as those seedlings that emerged later in May and June. Seedlings were often found uprooted, floating in the water. The rim of the buckets and the presence of Z. marina shoots appeared to protect the Z. japonica seedlings, preventing uprooting, but the results were not conclusive. Once seedlings became established, they spread vegetatively at a rapid rate and can persist throughout the winter, either as reduced shoots or as overwintering rhizomes. These overwintering plants contribute greatly to the following year's population. / Science, Faculty of / Botany, Department of / Graduate
18

Sea otter effects on soft sediment flora and fauna, and within ancient Indigenous maricultural systems

Foster, Erin U. 12 July 2021 (has links)
Most of what is known about the ways in which strongly interacting species affect ecological communities stems from changes to community structure revealed in contemporary research. However, trophic downgrading has limited the temporal extent to which inferences can be drawn. The aim of my Dissertation was to expand on the strongly interacting species concept by examining species interactions at a historical scale, in a textbook example of a strongly interacting and keystone predator. The sea otter, Enhydra lutris, was driven to near-extinction but is recovering in parts of its range, providing a mosaic of areas with and without sea otters. This mosaic allowed for a series of natural experiments, which I conducted using behavioural observations, genetic tools, and archaeological methods, to examine sea otter effects spanning contemporary (last ~40 yrs.), and late-Holocene (~3500-150 yrs. ago) timeframes, and on an evolutionary scale that inferred middle-Pleistocene interactions. In Chapter 2, my coauthors and I found that sea otter use of clam-based niches increased as occupancy-time increased, and that bachelor groups of male otters primarily inhabited these niches, findings that informed and inspired subsequent questions. In Chapter 3, we found that where sea otters were established for 20-30 years, the disturbance to eelgrass (Zostera marina), caused by sea otters digging for clams and other infaunal prey, was correlated with ~25% greater eelgrass allelic richness than where otters were present <10 yrs, or absent. We posit that sea otter digging has long-influenced the genetic diversity and resilience of eelgrass – perhaps since the middle Pleistocene. In Chapter 4, we asked how two strongly interacting species – people and sea otters – co-existed for millennia where they both consumed clams. We used assemblages of live and otter-cracked butter clams (Saxidomus gigantea), to confirm the ecological effects that sea otters exert today. We measured clams from archaeological assemblages in areas densely populated with clam gardens – terraced beaches that enhance clam habitat and productivity – and found that sea otters reduced the sizes of ancient clams, acting as ecologically effective predators in the mid-to-late Holocene. However, clam harvests were stable for thousands of years, with or without otters. We suggest that clam gardening supported coexistence of people and otters in the past, and could function the same way today. Collectively, we found that a few, perhaps long-forgotten, interactions increased the breadth of the strongly interacting species concept. In Chapter 5, I suggest that such rediscoveries could occur in other systems. Many large vertebrates have suffered population declines, but the most insidious losses accompanying these, are the losses of ecological interactions that become unknowable, and thus cannot be intentionally restored. By searching out ancient interactions, long-forgotten relationships have the potential to be recovered, and to inform our understanding of contemporary systems. / Graduate / 2022-09-10
19

Bio-morphodynamics of the Choked Passage seagrass meadow on Calvert Island, British Columbia, Canada

Paterson, Keegan 08 December 2022 (has links)
Seagrasses are ecosystem engineers, forming extensive meadows that provide critical habitat and modulate local morphodynamics. Their canopies induce drag on flow to attenuate mean flow and reduce near-bed flow velocities, which can shield the bed from erosion and sediment suspension. Alternatively, seagrass loss can enhance erosion and sediment suspension, which can be initiated through short-lived extreme events, or chronic long-term disturbances. Physical process and disturbances can govern the evolution of seagrass meadow ecosystems. In two separate chapters, this research examined 1) the influence of climate variability and storms on seagrass loss and erosion at a high spatial resolution, and 2) how flow attenuation by seagrass varies across tidal cycles and at different locations in the Choked Passage meadow, on the Central Coast of British Columbia. We used high resolution multibeam echosounder (MBES) bathymetry and backscatter data from 2018 to 2021, drone mapped seagrass delineations from 2014 to 2021, and wind and wave data from 2014 to 2021. Flow data (i.e. velocity magnitude, velocity direction, and acoustic backscatter) above the seagrass canopy was collected with an Acoustic Doppler Current Profiler (ADCP) along transects and moored to the seafloor over a tidal cycle. Sediment samples were collected from the bed to estimate critical shear stress and verify sediment classes from an acoustic backscatter analysis. From 2018 to 2021, the meadow experienced significant erosion (net surface lowering of -18,768 m3) and loss of seagrass (10% reduction), which we attribute to the preceding winter storm activity driven by moderate La Niña conditions. The spatial patterns of erosion and seagrass loss was non-uniform across the meadow. Coupled erosion and seagrass loss resulted in the generation and/or expansion of blowouts. We observed a trend of a reduction in seagrass coverage following winters with a high number of storm events and/or high recorded storm intensity from 2014 to 2021. We believe the Choked Passage seagrass meadow undergoes cyclic behaviour with reduction in seagrass coverage during energetic ENSO years, followed by a recovery period during weak years. The ADCP was used to detect the seagrass canopy height, measure flow, and estimate shear stress. Overall, flow is fastest in the northern section of the main meadow, particularly in the north-west corner where the meadow is patchy. Moreover, flow appears to accelerate through the meadow interior, which suggests that topographic steering and the strength of incoming currents exceeds the ability of seagrass to dampen flow velocity. During the transition from peak flood to ebb, flow velocity remained heightened for longer above the southern meadow and lagged the other sections. Shear stress results indicate that sediment can be transported as bedload and in suspension under peak flow velocities at some of the sites examined within the meadow. Shear stress is largest in the meadow center and lower towards the southern margin of the main meadow. Based on our results, when sediment transport is initiated under peak tidal and/or extreme conditions, sediment is likely primarily transported as bedload, creating the observed sand wave and blowout bedforms. This research demonstrated linkages between extreme storms (during ENSO years), seabed morphology, and seagrass coverage, and examined the variability in the interaction between flow, seagrass, and sediment transport. Geomorphic processes and disturbances have an important influence on ecosystem structure and function over time, therefore, it is important to understand how these processes operate and are modified by external drivers. The results of this study have significant implications on seagrass conservation, restoration, and the evolution of coastal landscapes. / Graduate
20

Defining Zostera marina (Eelgrass) Restoration Sites in Virginia's Coastal Bays with Aerial Images and Bathymetric Mapping

Wunderly, Martin A. 21 December 2009 (has links)
No description available.

Page generated in 0.0338 seconds