• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantização de Landau para quadrupolo elétrico.

Melo, Jilvan Lemos de 22 October 2010 (has links)
Made available in DSpace on 2015-05-14T12:14:05Z (GMT). No. of bitstreams: 1 Arquivototal.pdf: 5046450 bytes, checksum: bd56c31f5c1b1739dfc96f350ac77b34 (MD5) Previous issue date: 2010-10-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we discuss the importance of the quantum phases using the Aharonov-Bohm Effect for charged particles and neutral particles with magnetic dipole moment(Aharonov- Casher Effect) and electric dipole moment(He-McKellar-Wilkens Effect) and atoms with electric quadrupole moment. It takes advantage of the initial study of such systems to show the emergence of Landau levels in the dynamics of a particle in two situations: when the particle is charged and when it is neutral. In the case of a neutral particle is considered that it possesses electric dipole moment. In addition it is the first time which is approached a neutral atom with electric quadrupole moment. / Neste trabalho discutimos a importância das fases quânticas usando o Efeito Aharonov-Bohm para partículas carregadas e partículas neutras com momento de dipolo magnético (Efeito Aharonov-Casher) e momento de dipolo elétrico (Efeito He-McKellar-Wilkens), e átomos com momento de quadrupolo elétrico. Tira-se vantagem do estudo inicial de tais sistemas para mostrar a emersão de níveis de Landau na dinâmica de uma partícula em duas situações: quando a partícula está carregada e quando ela é neutra. No caso de uma partícula neutra é considerado que esta possui momento de dipolo elétrico. Além disso é a primeira vez que é abordado um átomo neutro com momento de quadrupolo elétrico.
2

Fases geométricas, quantização de Landau e computação quâantica holonômica para partículas neutras na presença de defeitos topológicos

Bakke Filho, Knut 06 August 2009 (has links)
Made available in DSpace on 2015-05-14T12:14:06Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1577961 bytes, checksum: c71d976d783495df566e0fa6baadf8ca (MD5) Previous issue date: 2009-08-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / We start this work studying the appearance of geometric quantum phases as in the relativistic as in the non-relativistic quantum dynamics of a neutral particle with permanent magnetic and electric dipole moment which interacts with external electric and magnetic fields in the presence of linear topological defects. We describe the linear topological defects using the approach proposed by Katanaev and Volovich, where the topological defects in solids are described by line elements which are solutions of the Einstein's equations in the context of general relativity. We also analyze the in uence of non-inertial effects in the quantum dynamics of a neutral particle using two distinct reference frames for the observers: one is the Fermi-Walker reference frame and another is a rotating frame. As a result, we shall see that the difference between these two reference frames is in the presence/absence of dragging effects of the spacetime which makes its in uence on the phase shift of the wave function of the neutral particle. In the following, we shall use our study of geometric quantum phases to make an application on the Holonomic Quantum Computation, where we shall show a new approach to implement the Holonomic Quantum Computation via the interaction between the dipole moments of the neutral particle and external fields and the presence of linear topological defects. Another applications for the Holonomic Quantum Computation is based in the structure of the topological defects in graphene layers. In the presence of topological defects, a graphene layer shows two distinct phase shifts: one comes from the mix of Fermi points while the other phase shift comes from the topology of the defect. To provide a geometric description for each phase shift in the graphene layer, we use the Kaluza-Klein theory where we establish that the extra dimension describes the Fermi points in the graphene layer. Hence, we can implement the Holonomic Quantum Computation through the possibility to build cones and anticones of graphite in such way we can control the quantum uxes in graphene layers. In the last part of this work, we study the Landau quantization for neutral particles as in the relativistic dynamics and non-relativistic dynamics. In the non-relativistic dynamics, we study the Landau quantization in the presence of topological defects as in an inertial as in a non-inertial reference frame. In the relativistic quantum dynamics, we start our study with the Landau quantization in the Minkowisky considering two different gauge fields. At the end, we study the relativistic Landau quantization for neutral particles in the Cosmic Dislocation spacetime. / Neste trabalho estudamos inicialmente o surgimento de fases geometricas nas dinâmicas quânticas relativística e não-relativística de uma partícula neutra que possui momento de dipolo magnético e elétrico permanente interagindo com campos elétricos e magnéticos externos na presença de defeitos topológicos lineares. Para descrevermos defeitos topológicos lineares usamos a aproximação proposta por Katanaev e Volovich, onde defeitos lineares em sólidos são descritos por elementos de linha que são soluções das equações de Einstein no contexto da relatividade geral. Analisamos também a inuência de efeitos não-inerciais na dinâmica quântica de uma partícula neutra em dois tipos distintos de referenciais para os observadores: um é o referencial de Fermi-Walker e outro é um referencial girante. Vemos que a diferença entre dois referenciais está na presença/ausência de efeitos de arrasto do espaço-tempo que irá influenciar diretamente na mudança de fase na funçãao de onda da partícula neutra. Em seguida, usamos nosso estudo de fases geométricas para fazer aplicações na Computação Quântica Holonômica onde mostramos uma nova maneira de implementar a Computação Quântica Holonômica através da interação entre momentos de dipolo e campos externos e pela presença de defeitos topológicos lineares. Outra aplicação para a Computação Quântica Holonômica está baseada na estrutura de defeitos topológicos em um material chamado grafeno. Na presença de defeitos topológicos lineares, esse material apresenta duas fases quânticas de origens distintas: uma da mistura dos pontos de Fermi e outra da topologia do defeito. Para dar uma descrição geométrica para a origem de cada fase no grafeno usamos a Teoria de Kaluza-Klein, onde a dimensão extra sugerida por esta teoria descreve os pontos de Fermi no grafeno. Portanto, a implementação da Computação Quântica Holonômica no grafeno está baseada na possibilidade de construir cones e anticones de grafite de tal maneira que se possa controlar os fluxos quânticos no grafeno. Na última parte deste trabalho estudamos a quantização de Landau para partículas neutras tanto na dinâmica não-relativística quanto na dinâmica relativística. Na dinâmica não-relativítica, estudamos a quantização de Landau na presença de defeitos em um referecial inercial e, em seguida, em um referencial nãoo-inercial. Na dinâmica relativística, estudamos inicialmente a quantização de Landau no espaço-tempo plano em duas configurações de campos diferentes. Por fim, estudamos a quantização de Landau relativística para partículas neutras no espaço-tempo da deslocação cósmica.

Page generated in 0.0569 seconds