• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Energy Supply and Demand Side Management in Industrial Microgrid Context / Gestion de la production et de la demande d'énergie dans un contexte de Microgrid Industriel

Desta, Alemayehu 04 December 2017 (has links)
En raison de l'augmentation des coûts d'énergie et des préoccupations environnementales telles que les empreintes de carbone élevées, les systèmes de la production d'électricité centralisée se restructurent pour profiter des avantages de la production distribuée afin de répondre aux exigences énergétiques toujours croissantes. Les microgrids sont considérés comme une solution possible pour déployer une génération distribuée qui inclut des ressources énergétiques distribuées DERs (Distributed Energy Resources)(e.g, solaire, éolienne, batterie, etc). Dans cette thèse, nous traitons les défis de la gestion d'énergie dans un microgrid industriel où les charges énergétique sont constituées de processus industriels. Notre plan consiste à diviser la gestion de l'énergie du microgrid en deux parties: la production et la demande d’énergie.Du côté de la production d'énergie, les défis incluent la modélisation des générations de puissance et le lissage des fluctuations des DER. Pour modéliser les générations de puissance, nous proposons un modèle basé sur les concepts de service courbé de Network Calculus. En utilisant cet outil mathématique, nous déterminons une quantité minimale de puissance que les DERs peuvent générer; leur agrégation nous donnera une production d'énergie totale dans le microgrid. Après cela, s'il existe un déséquilibre entre la production et la demande d'énergie, nous proposons des stratégies différentes pour minimiser les coûts d'approvisionnement énergétique. Sur la base des données réelles de la consommation d'énergie d'un site industriel situé en France, des économies significatives peuvent être réalisées en adoptant ces stratégies. Dans cette thèse, nous étudions également comment atténuer les effets des fluctuations de puissance des DERs en conjonction avec des systèmes de stockage d'énergie. Pour cela, nous proposons un algorithme de lissage gaussien et nous le comparons avec des algorithmes de lissage trouvés dans l'état de l'art. Nous avons trouvé que l'algorithme proposé utilise de batterie de moins de taille à des fins de lissage par rapport à d'autres algorithmes. À cette fin, nous sommes également intéressés à étudier les effets de la gamme admissible des fluctuations sur les tailles de la batterie.Du côté de la demande, l'objectif est de réduire les coûts de l'énergie grâce aux approches de gestion de la demande DSM (Demand Side Management) telles que Demand Response (DR) et Energy Efficiency. Comme les processus industriels consomment énormément, une petite réduction de la consommation d'énergie en utilisant les approches DSM pourrait se traduire par des économies cruciales. Cette thèse se concentre sur l'approche DR qui peut profiter des prix variables de l'électricité dans le temps pour déplacer les demandes énergétiques des heures de pointe aux heures creuses. Pour atteindre cet objectif, nous comptons sur un modèle basé sur la théorie de file d'attente pour caractériser les comportements temporels (arrivée et départ des tâches) d'un système de fabrication. Après avoir défini les processus d'arrivée et de départ de tâches, une fonction d'utilisation efficace est utilisée pour prédire le comportement de la machine dans un domaine temporel et qui peut afficher son statut (allumé/éteint) à tout moment. En prenant le statut de chaque machine dans une ligne de production comme une entrée, nous proposons également un algorithme de planification DR qui adapte la consommation d'énergie d'une ligne de production aux deux contraintes de puissance disponibles et de taux de production. L'algorithme est codé à l'aide d’une machine d’état fini déterministe (Deterministic Finite State Machine) dans laquelle les transitions d'état se produisent en insérant une tâche à l'entrée du tapis roulant (on peut aussi avoir des transitions sans insertion de taches). Nous définissons des conditions pour l'existence d’un planificateur réalisable et aussi des conditions pour accepter positivement des demandes DRs / Due to increased energy costs and environmental concerns such as elevated carbon footprints, centralized power generation systems are restructuring themselves to reap benefits of distributed generation in order to meet the ever growing energy demands. Microgrids are considered as a possible solution to deploy distributed generation which includes Distributed Energy Resources (DERs) (e.g., solar, wind, battery, etc). In this thesis, we are interested in addressing energy management challenges in an industrial microgrid where energy loads consist of industrial processes. Our plan of attack is to divide the microgrid energy management into supply and demand sides.In supply side, the challenges include modeling of power generations and smoothing out fluctuations of the DERs. To model power generations, we propose amodel based on service curve concepts of Network Calculus (NC). Using this mathematical tool, we determine a minimum amount of power the DERs can generate and aggregating them will give us total power production in the microgrid. After that, if there is an imbalance between energy supply and demand, we put forward different strategies to minimize energy procurement costs. Based on real power consumption data of an industrial site located in France, significant cost savings can be made by adopting the strategies. In this thesis, we also study how to mitigate the effects of power fluctuations of DERs in conjunction with Energy Storage Systems (ESSs). For this purpose, we propose a Gaussian-based smoothing algorithm and compare it with state-of-the-art smoothing algorithms. We found out that the proposed algorithm uses less battery size for smoothing purposes when compared to other algorithms. To this end, we are also interested in investigating effects of allowable range of fluctuations on battery sizes.In demand side, the aim is to reduce energy costs through Demand Side Management (DSM) approaches such as Demand Response (DR) and Energy Efficiency (EE). As industrial processes are power-hungry consumers, a small power consumption reduction using the DSM approaches could translate into crucial savings. This thesis focuses on DR approach that can leverage time varying electricity prices to move energy demands from peak to off-peak hours. To attain this goal, we rely on a queuing theory-based model to characterize temporal behaviors (arrival and departure of jobs) of a manufacturing system. After defining job arrival and departure processes, an effective utilization function is used to predict workstation’s (or machine’s) behavior in temporal domain that can show its status (working or idle) at any time. Taking the status of every machine in a production line as an input, we also propose a DR scheduling algorithm that adapts power consumption of a production line to available power and production rate constraints. The algorithm is coded using Deterministic Finite State Machine (DFSM) in which state transitions happen by inserting a job (or not inserting) at conveyor input. We provide conditions for existence of feasible schedules and conditions to accept DR requests positively.To verify analytical computations on the queuing part, we have enhanced Objective Modular Network Testbed in C++ (OMNET++) discrete event simulator for fitting it to our needs. We modified various libraries in OMNET++ to add machine and conveyor modules. In this thesis, we also setup a testbed to experiment with a smart DR protocol called Open Automated Demand Response (OpenADR) that enables energy providers (e.g., utility grid) to ask consumers to reduce their power consumption for a given time. The objective is to explore how to implement our DR scheduling algorithm on top of OpenADR
2

Optimisation numérique et expérimentale de stratégies d’effacement énergétique / Numerical and experimental optimization of peak power reduction control strategies

Stathopoulos, Nikolaos 27 February 2015 (has links)
Dans le contexte énergétique français actuel, deux principaux enjeux émergent. À court terme, des pointes de consommation électrique croissantes sont observées les dernières années pendant la période hivernale. Ces pointes sont fortement liées au chauffage électrique et ont des conséquences économiques, environnementales et sociales importantes. Dans un long terme, des objectifs environnementaux ambitieux ont été fixés au niveau national et européen, nécessitant la technologie de stockage thermique et une gestion efficace de l'environnement bâti. Les Matériaux à Changement de Phase (MCP) ainsi que les dispositifs de type échangeurs thermiques offrent des résultats promettant grâce au stockage thermique et le déplacement des consommations. Dans ce cadre, l’objectif de cette thèse est de développer des solutions de déplacement des consommations énergétiques qui prennent en compte le confort thermique des occupants et la qualité de l’air intérieur. Pour ce faire, deux outils sont nécessaires: un échangeur thermique expérimental (prototype) et un modèle numérique capable de simuler son comportement. L'échangeur contient du MCP macroencapsulé (paraffine) et est conçu de manière à faciliter son intégration dans un système de ventilation. Il a comme but de décaler la consommation due au chauffage électrique vers la période hors pointe. Le dispositif a été caractérisé expérimentalement lors des cycles thermiques complets (charge et décharge) en utilisant une quantité importante de capteurs. Il a ensuite été couplé à une cellule expérimentale, afin de tester des stratégies de contrôle préliminaires. Le modèle numérique est basé sur la discrétisation spatiale et l’établissement du bilan de chaleur des couches considérées, la méthode de la capacité thermique apparente, ainsi que l’utilisation des différences finies. Après validation à l’aide des données expérimentales, le modèle a été utilisé pour optimiser la performance de l'échangeur. Plusieurs paramètres ont été étudiés, y compris les dimensions de l'échangeur, la quantité et les propriétés du MCP, en cherchant la configuration avec le compromis optimal entre la chaleur emmagasinée et le temps nécessaire pour la charge et la décharge. Le modèle numérique a été couplé à un modèle de simulation du bâtiment et un logement de 80m2 a été conçu pour la mise en oeuvre et l'évaluation des stratégies de contrôle, en investiguant différents scénarios sur une période hivernal d’un mois. Les scénarios varient avec une complexité croissante, d'abord en considérant l’effacement énergétique et le confort thermique, ensuite en ajoutant le prix final de la consommation électrique et enfin en prenant compte la qualité de l'air intérieur avec la présence d'une famille de quatre personnes. 6 Cette étude a été menée dans le cadre d'un projet financé par l'Agence National de la Recherche (Stock-Air: ANR-Stock-E) et a également été soutenu par le ministère de l'Ecologie, du Développement durable et de l'Energie. / Considering the current French energy context, two major challenges are emerging. In the short term, significant peak power consumption has been observed in the past few years during the winter season. These peaks are strongly linked to electrical space heating and have important economic, environmental and social implications. In the long term, ambitious environmental goals have been set at national and European levels, requiring thermal storage technology and efficient management of the built environment. As part of the solution, Phase Change Materials (PCM) and heat exchanger applications offer promising results through thermal storage and load shifting techniques. Within this framework, the objective of this thesis is to develop load shifting solutions which also take into account the thermal comfort of the occupants and the indoor air quality. To achieve this, two tools were necessary: an experimental heat exchanger unit (prototype) and a numerical model that accurately simulates its behavior. The exchanger contains macroencapsumated PCM (paraffin) and is conceived in a way that facilitates its integration in a ventilation system. It is aimed to shift space heating electrical consumption from peak to off-peak period. The unit was experimentally characterized, using an important amount of sensors through full thermal cycles (charging and discharging) and was coupled to an experimental test cell, which led to the testing of preliminary control strategies. The numerical model is based on the heat balance approach and the apparent heat capacity method, using finite differences for differential equation solution under Matlab/Simulink environment. After validation with experimental data, the model was used to optimize the performance of the exchanger. Several parameters were investigated, including heat exchanger dimensions, PCM quantity and properties, seeking the configuration with the optimal compromise between stored heat and the time needed for the charging / discharging process. The numerical model was coupled to a building simulation model and an 80m2 dwelling was conceived for control strategies implementation and evaluation, by investigating different scenarios over a one- month winter period. The scenarios vary with increasing complexity, first considering load shifting and thermal comfort, then adding the final price of electricity consumption and finally taking into account the indoor air quality with the presence of a four-person family. This study has been conducted within the framework of a project funded by the French National Research Agency (Stock-Air: ANR-Stock-E) and was also financially supported by the French Ministry of Sustainable Development.

Page generated in 0.1351 seconds