• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 109
  • 43
  • 19
  • 19
  • 19
  • 19
  • 19
  • 19
  • 8
  • 8
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 251
  • 251
  • 171
  • 76
  • 62
  • 55
  • 53
  • 43
  • 41
  • 38
  • 37
  • 36
  • 34
  • 32
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Heavy metals uptake by wheat under two transpiration rates

Salah, Sharif Ali. January 2001 (has links)
The present project aimed at measuring plant heavy metal uptake as a function of transpiration rates and dissolved heavy metal level in the soil solution. Two experiment was conducted separately in two season (Spring and Fall 2000). In these two experiments, young wheat plants ( Triticum aestivum) were irrigated with nine different solutions containing Cd and Zn. The study was conducted in two chambers where relative humidity was controlled to obtain two different levels of transpiration rates. Each control chambers contained 27 pots filled with sand and seeded with wheat plants, each nine triplicated pots receiving a different treatment: three Cd treatments with levels of 0.01, 0.10, and 0.50 mg/L; one Zn treatment with level of 25mg/L and four treatment combinations of Cd/Zn with levels of 0.01 Cd/25Zn, 0.10Cd/25ZN, 0.50Cd/25Zn and 0.50Cd/50Zn mg/L. The transpiration rate of the plants was monitored over a period of 30 days, measured from the emergence of the plants by weighing the pots daily. On day 15 and 30, three plants were removed from each pot, to weigh their dry matter production and to analyze their heavy metal uptake. (Abstract shortened by UMI.)
32

The use of chemical analyses, bioassays and benthic biomonitoring in the toxicity assessment of complex industrial effluents /

Sarakinos, Helen C. January 1997 (has links)
This research examined the toxicity of complex industrial effluents as measured by chemical analyses, whole effluent toxicity (WET) tests and surveys of the receiving water biota. Toxicity of final effluents from 45 diverse facilities was examined to determine whether inferred toxicity based on presence and concentration of priority substances could predict WET, calculated from a battery of bioassays on bacteria, cladocerans and algae. Following corrections of inferred toxicity for particle-bound contaminants and adjustment for free ion activity, correlation between inferred and whole effluent toxicity was highly significant. Effluents with elevated metal concentrations exhibited lower WET than predicted, likely due to negative interactions among trace metals; kraft mill effluents exhibited higher WET than predicted which is consistent with findings in the literature. / The ability of laboratory WET tests to predict thresholds of invertebrate community response to a complex industrial effluent was examined. Patterns in invertebrate community structure were detrended for environmental factors and compared to measured instream effluent concentrations. Laboratory effect thresholds, reported as Maximum Allowable Toxicant Concentrations (MATC), were calculated from a battery of toxicity tests on bacteria, algae, cladocerans and fish. Declines in taxonomic richness corresponded to calculated lab thresholds, while changes in abundance of total taxa and sensitive taxa, (Ephemeroptera, Plecoptera, Trichoptera) occurred at lower concentrations than predicted from MATCs. The tendency for invertebrate abundance to decline at lower instream effluent concentrations than richness supports findings in the literature. Lack of correspondence between lab and field thresholds may be ameliorated by the addition of behavior endpoints, (e.g. avoidance) to toxicity tests.
33

Bioenergetics and mercury dynamics in fish

Trudel, Marc. January 1999 (has links)
This research focuses on the development, evaluation, and application of a mercury (Hg) mass balance model for predicting the accumulation of Hg in fish. This model requires accurate estimates of Hg elimination rate by fish and feeding rates to adequately predict Hg concentration in fish. An empirical model was developed to estimate Hg elimination by fish using data obtained from published experiments. This analysis showed that Hg elimination rate was overestimated in short-term experiments, positively correlated to water temperature, negatively correlated to body size, and that the elimination rate of inorganic Hg was faster than that of methylmercury. This empirical model was then incorporated in a Hg mass balance model to predict the concentration of Hg in fish. The Hg mass balance model accurately predicted Hg concentration in fish when it was combined with food consumption rates that were determined using a radioisotopic method. This analysis suggested that the parameters of the Hg mass balance model were adequate for predicting Hg concentration in fish. I also showed that Hg concentration tended to be underestimated by the Hg mass balance model when it was combined with feeding rates determined with a laboratory-derived bioenergetic model, probably because activity costs derived in the laboratory do not reflect activity costs of fish in the field. Beside predicting Hg concentration in fish, I showed that this mass balance model could also be used to estimate feeding rates of fish in the field by measuring the concentration of Hg in fish. This approach was validated using data obtained from a published experiment. It was also successfully tested using independent estimates of feeding rates obtained with a radioisotopic method. I applied this Hg mass balance model to compare the energy budget of sympatric populations of dwarf and normal whitefish (Coregonus clupeaformis). This analysis showed that dwarf whitefish consumed 40--50% more food than normal whitefi
34

Toxicological Comparison of Heavy Metal Salt and Semiconductor Nanoparticle Exposure in Zebrafish (Danio rerio)

Johnson, Adam Nicholas January 2007 (has links) (PDF)
No description available.
35

Die biokonsentrering van atrasien, sink en yster in Tilapia sparrmanii (Cichlidae)

Van Rensburg, Engela Larya 17 November 2014 (has links)
M.Sc. / Please refer to full text to view abstract
36

An assessment of the effects of water quality on the ichthyofauna of the Ga-Selati river, Limpopo, South Africa

Aken, Warren Randal 09 December 2013 (has links)
M.Sc. (Aquatic Health) / The lower Olifants River within the Kruger National Park is regarded as an environmentally sensitive area which has been found to exhibit high levels of aquatic diversity. The biodiversity in this lower section of the Olifants River is under threat as a result of the cumulative impacts upstream within the catchment. These impacts are apparent in water pollution, siltation and reduced stream flows as a result of agriculture, mining, industry and power generation. Although the impacts within the upper catchment have been well documented, it was the numerous fish kills within the river which brought the issue of river health into the public eye. Due to the intensive industrial activities on the Ga-Selati River, a tributary of the Olifants River, and its close proximity to the Kruger National Park, much focus has been placed on the river’s water quality, especially industrial effluent containing high concentrations of pollutants. Currently bi-annual monitoring of the aquatic ecosystems associated with the industries along the Ga-Selati River is being conducted, providing information of the ichthyofaunal communities within the system. In addition to this, the separate industries collect water quality data as frequently as weekly. The aim of this project is to lay the foundation for understanding the state of the Ga-Selati River, and to determine what water quality variables may be influencing the ichthyofaunal structure within the river. Analysis of water quality data showed that elevated levels of salts are evident, with a downstream increase in concentrations being observed along the length of the Ga-Selati River at a given point in time. Over the eight years of data considered, the overall trend indicates a general water quality improvement (decreased concentrations). A reoccurring trend showed an increase in salts between two of the sites, suggesting a source of contamination within this area. A statistical analysis of the fish community data and environmental data showed there to be a clear distinction between historical (2003, 2004 and 2005) and recent surveys (2009 and 2010). During the first time period, Site 1 showed the lowest diversity and showed to be significantly different from the remainder of the sites. During the second time period, diversity at Site 1 increased, and it was noted that overall, there was greater variability within the data. In general it was observed that upstream species richness was lower compared with downstream sites. This trend is likely linked to the proximity of the Olifants River, which allows migration into the lower reaches of the Ga-Selati River. The historical monitoring data revealed that water quality and in particular salts are influential in the structuring of ichthyofaunal communities. This change can be substantiated by identifying that an improvement in water quality has resulted in a positive shift in ichthyofaunal community structure. The analysis of this information will contribute towards the improved management and conservation of the Ga-Selati River system. Although mining houses/industries are collecting and sharing water quality data, it would be valuable if a strategic approach to sample collection and management was perused. A centralised database will increase the understanding of the driving variables behind ichthyofaunal community structure within the river and would lay the foundation for future closure plans. It is imperative that an excellent set of water quality data is available during the design of appropriate rehabilitation and treatment facilities.
37

The biological response of foraminifera to ocean acidification

Khanna, Nikki January 2014 (has links)
Elevated atmospheric concentrations of carbon dioxide (CO₂), partly driven by anthropogenic activity, are decreasing the pH of the oceans. This thesis aimed to assess the biological response of foraminifera to ocean acidification. Foraminifera are single-celled organisms that form the dominant component of many marine communities. A series of laboratory experiments were carried out on benthic intertidal foraminifera from the Eden and Ythan estuaries, NE Scotland, to assess the impacts of ocean acidification. The responses of two dominant intertidal species of foraminifera (Haynesina germanica and Elphidium williamsoni) to ocean acidification were initially investigated in a short-term (6 week) experiment. Multiple species and multiple stressors (seasonal temperature regime and elevated CO₂) were then incorporated in a long-term (18 month) mesocosm study to investigate the physiological consequences (e.g. survival, growth) of ocean acidification. Survival of both Haynesina germanica and Elphidium williamsoni was significantly reduced under low pH conditions. Live specimens of both these calcareous species were however recorded at low pH, in reduced numbers. Following long-term exposure to ocean acidification, foraminiferal populations were still dominated by calcareous forms. Agglutinated foraminifera were recorded throughout the long-term incubations but their numbers were not high enough in the initial sediment collections to allow them to contribute significantly to the populations. Overall, survival of all foraminifera was greatly reduced in elevated CO₂ treatments. Temperature effects were observed on foraminiferal survival and diversity with the largest CO₂ effects recorded under the seasonally varying temperature regime. Foraminiferal test damage for all live species was also highest under elevated CO₂ conditions. Test dissolution was particularly evident in Haynesina germanica with important morphological features, such as functional ornamentation, becoming reduced or completely absent under elevated CO₂ conditions. A reduction in functionally important ornamentation could lead to a reduction in feeding efficiency with consequent impacts on this organism's survival and fitness. In addition, changes in the relative abundance and activities of these important species could affect biological interactions (e.g. food web function) and habitat quality.
38

Die effek van atrasien, sink en yster op die hematologie en suurstofverbruik van Tilapia sparrmanii (Cichlidae)

Grobler, Eurika 26 May 2014 (has links)
M.Sc. (Zoology) / Tilapia sparrmanii (Smith) obtained from the Provincial Fishery in Lydenburg was used for toxicological studies. The haematology of T. sparrmanii was investigated after exposure to sub-lethal doses of atrazine, zinc and iron for 72 hours in a continuous flow and static system, as well as prolonged (4 weeks) exposure in the continuous flow system. After exposure the blood of the experimental fish were sampled. Mean values and standard errors were obtained for several haematological parameters such as number of red and white blood cells, haematocrit, haemoglobin, mean corpuscular volume, pH, plasma glucose-, protein-, lipid- and lactate concentrations, as well as plasma Na+, K+, eland Ca+. Statistically significant differences were found between the values of haematological parameters of experimental and control fish. A tendency towards haemoconcentration was observed when fish were exposed to the low pollutant concentrations, while signs of haemodilution was found at higher concentrations. The results in this study demonstrate that, after prolonged exposure, T. sparrmanii develops a tolerance and partially recovers from the stress condition. The bioconcentration of atrazine in the blood of T. sparrmanii after exposure were determined by liquid chromatography and zinc and iron by atomic absorption spectrophotometry. During this study it was found that atrazine, zinc and iron concentrated in the blood of T. sparrmanii after short- and prolonged exposure to the pollutants. The routine oxygen consumption of "!'. sparrmanii exposed to atrazine, zinc and iron were determined in a continuous flow apparatus over 72 hours. The oxygen consumption of the experimental fish fluctuated for the first 8-12 hours during the acclimation period. The influence of atrazine on the routine oxygen consumption was not so drastic as that of zinc and iron. Zinc caused a decrease in the routine oxygen consumption of the experimental fish over 72 hours, while iron increased the routine oxygen consumption...
39

A Semiquantitative Analysis of PCB and P,P-DDE Residues in Stranded Marine Mammals Using High Performance Liquid Chromatography

Hayteas, David Lawrence 01 January 1996 (has links)
Organochlorines are ubiquitous pollutants of the marine environment. These lipid-soluble and highly persistent compounds are found in detectable amounts in almost all marine organisms, and accumulate in the lipid tissues of marine animals. This bioaccumulation leads to biomagnification of these contaminants in higher trophic levels. Near the top of many marine food chains are found the marine mammals, in whose blubber high levels of organochlorine residues have been measured. The most commonly occurring of these pollutants in these animals are the polychlorinated biphenyls (PCB's) and p,p-DDE, a metabolite of the insecticide DDT. These substances have been shown to cause disruptions in the endocrine, immune, and reproductive systems, and are passed from mother to offspring through the placenta and by lactation. Presence and levels of residues of these compounds are, therefore, monitored in marine mammals to provide an indication of the health of a given population and the environment in which they live. Such monitoring is generally done with the use of gas chromatography (GC). High performance liquid chromatography (HPLC) is little used due to the poor ultraviolet (UV) absorbance properties of many of the organochlorines. PCB's and p,p-DDE do absorb UV well enough at concentrations usually encountered in marine mammals to permit the use of HPLC for detection and semiquantification of these substances. A method was developed for the screening of blubber of marine mammals for total PCB's and p,p-DDE using HPLC. The method was applied to the detection and approximation of levels of these two organochlorines in marine mammals from the east and west coasts of the United States. Geographical differences in levels of the two pollutants were found, indicating differences in primary feeding ranges. Evidence of placental transfer of these two organochlorines was also found. Especially high residue levels were found in the blubber of stranded killer whales, indicating that acquisition of high pollutant burdens is still a problem in these top predators. It was concluded that HPLC can be used to screen marine mammals for PCB's and p,p-DDE, and that residue levels determined can be useful in investigating species range, pollutant burdens, and health of populations.
40

Determinants of the short term dynamics of PCB uptake by the plankton

Richer, Guylaine January 1991 (has links)
No description available.

Page generated in 0.0888 seconds