• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 7
  • 5
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 104
  • 104
  • 104
  • 34
  • 30
  • 26
  • 25
  • 21
  • 17
  • 15
  • 14
  • 13
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Heavy metals uptake by wheat under two transpiration rates

Salah, Sharif Ali. January 2001 (has links)
The present project aimed at measuring plant heavy metal uptake as a function of transpiration rates and dissolved heavy metal level in the soil solution. Two experiment was conducted separately in two season (Spring and Fall 2000). In these two experiments, young wheat plants ( Triticum aestivum) were irrigated with nine different solutions containing Cd and Zn. The study was conducted in two chambers where relative humidity was controlled to obtain two different levels of transpiration rates. Each control chambers contained 27 pots filled with sand and seeded with wheat plants, each nine triplicated pots receiving a different treatment: three Cd treatments with levels of 0.01, 0.10, and 0.50 mg/L; one Zn treatment with level of 25mg/L and four treatment combinations of Cd/Zn with levels of 0.01 Cd/25Zn, 0.10Cd/25ZN, 0.50Cd/25Zn and 0.50Cd/50Zn mg/L. The transpiration rate of the plants was monitored over a period of 30 days, measured from the emergence of the plants by weighing the pots daily. On day 15 and 30, three plants were removed from each pot, to weigh their dry matter production and to analyze their heavy metal uptake. (Abstract shortened by UMI.)
22

The uptake of heavy metals by aquatic macrophytes and the development of microsampling analytical techniques

Bateman, Mark J. January 1999 (has links)
This thesis reviews literature relating both to the treatment of metal rich wastewaters by the use of constructed wetlands and the use of slurry analytical procedures for the determination of heavy metals in environmental micro-samples. A survey of metal contaminated wetland sites showed that aquatic plants maintain low levels of metals in aerial parts despite some very elevated sediment metal concentrations and extreme acidity. A series of greenhouse trials investigated the uptake of metals into aerial sections of Typha, Phragmites and Equisetum in long term hydroponic experiments. Phragmites was shown to accumulate zinc to a higher level than Typha. The toxicity of zinc supplied in the nutrient solution at 5 mg.dm-3 over long periods was found to limit the viability of such non-sediment based systems. A reliable routine analytical procedure was developed along with a program of quality control for the study of metal uptake into aquatic plants. A micro sampling technique, eminently suited for the analysis of small plant sections was developed. This technique uses ozone to ash the plant samples at a low temperature and following suspension in a liquid medium provides a sample ready for slurry determinations by a variety of analytical instrumentation. It is proposed that this method may also be suitable for the determination of metals in individual invertebrates and other zoological micro-samples as well as potential applications in the medical field.
23

Genetic and molecular basis of heavy metal tolerance and the heat shock response in the Mediterranean fruit fly : Ceratitis capitata

Sujinda Thanaphum January 1995 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 1995. / Includes bibliographical references (leaves 171-187). / Microfiche. / xix, 187 leaves, bound ill. 29 cm
24

Tissue variability in the infaunal bivalve Axinopsida serricata (Lucinacea: Thyasiridae) exposed to a marine mine-tailings discharge; and associated population effects

Bright, Doug Arthur 22 June 2018 (has links)
Axinopsida serricata (Bivalvia) is abundant in coastal waters of British Columbia subjected to natural and anthropogenic disturbance. To investigate the monitoring potential of histological lesions, field populations were sampled in Holberg Inlet and Quatsino Sound, British Columbia, from benthic habitats affected by the submarine discharge of copper-mine tailings, and from a reference site in Mill Bay, Saanich Inlet. Based on a quantitative analysis of the digestive gland, ctenidia, kidney, gonad and stomach, the relationship between histological variation and site, size, season, sex and parasitism was explored. The relationship between occurrence of histological lesions in this species and further ecological consequences of mine-tailings discharge was also explored by comparing population characteristics of clams living in deposited tailings with clams from the reference site. Between-sample differences were observed in the structure of digestive tubule digestive cells, digestive ducts, ctenidial frontal cells, laterofrontal cells, and abfrontal mucocytes, kidney concretions, and stomach epithelial cells. The pattern of differences in tissue structure between samples reflected proximity of the collection site to the mine-tailings discharge and seasonally-dependent reproductive activity. Simultaneous examination of six of the tissue variables (using a principal components analysis) showed that clams collected from three stations in Lower Holberg Inlet which were in closer proximity to the tailings discharge pipe were distinguishable from clams collected from the reference site, upper Holberg Inlet, and Quatsino Sound. Tissue structural variability in A. serricata was not influenced by sex, or ectoparasitism by a flagellate. Tissue variables were not causally related to clam size (and thus of age and duration of exposure). In spite of the notorious natural plasticity of molluscan tissues, the variability can be partitioned to provide a very effective interpretation of exposure to stressors. Based on an increased abundance in degraded habitats, A. serricata, and the superfamily Lucinacea in general, have been described as r-selected or opportunistic species. An investigation of life-history traits showed that A. serricata has a maximum longevity of five years or longer, exhibits sporadic growth primarily in the summer months, and is an iteroparous, gonochoristic broadcast spawner with gamete release occurring primarily in November. The observed life span of the clam and presence of ova which are very large (maximum diameter is approximately 100 μm) and yolk-rich for a broadcast spawner are somewhat at odds with the contention that A. serricata is an r-selected species. Tissue variations which occurred in the digestive tubules and ctenidia with increased incidence and severity closer to the tailings discharge pipe are similar to histopathological effects in molluscs as described by others. However, there is no evidence that tissue lesions in A. serricata negatively affect fecundity, growth, or abundance. The sub-population sampled closest to the discharge pipe is in a state of decline, but this is due to the absence of recruitment since 1986, rather than increased mortality in the established population. The apparent decoupling of tissue-level and population-level effects may be due to a time lag in manifestation of decreased fitness at the population level, selection of stress-tolerant individuals in response to the stressor, a strategy of neglect of somatic maintenance and repair, or some other mechanism. It is possible that A. serricata and other small Thyasirids have an evolutionary history which provides pre-adaptation to environmental stressors. / Graduate
25

The effects of selected heavy metals and DDT exposure on selected aquatic organisms : a laboratory and field study

Mlambo, Sibonani Sandra 30 May 2012 (has links)
Ph.D. / This study consisted of a two-tiered approach to assessment of the effects of EDCs on aquatic organisms, and heavy metal accumulation in the aquatic environment, by integrating field work and laboratory-based experiments. In the last three decades a considerable portion of research in aquatic health and aquatic toxicology has been largely focused on endocrine disruptors, aiming to establish how certain chemicals discharged into the environment, especially organochlorine pesticides (OCs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), surfactants and plasticisers, can mimic endogenous hormones and thereby induce reproductive abnormalities. The rationale behind the present study was the growing interest in the study of endocrine disrupting chemicals (EDCs) internationally and the aspects of this field of research that are relevant to South Africa’s aquatic environment and its endemic aquatic organisms. The field work was carried out in the Rietvlei Wetland System and consisted of a combination of plant root analysis and application of the South African Scoring System 5 (SASS5) macroinvertebrate index. Three characteristic wetland macrophytes used in the study were Typha capensis, Phragmites australis and Persicaria lapathifolia. Samples of plants, sediment and water were taken from predetermined locations along the wetland system in the Rietvlei Nature Reserve and analyzed for heavy metals by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The heavy metals analyzed in this study; lead, arsenic and cadmium, have also been implicated as endocrine disruptors. The results of heavy metal accumulation in the plant roots reflected a pollution trend along the wetland, suggesting that plant roots are useful bioindicators of contamination in freshwater systems.
26

Evaluation of biomarkers for pollution in Oreochromis mossambicus: a laboratory and field study

Joubert, Anel 11 September 2008 (has links)
There are many types of chemicals/contaminants present in the environment, ranging from synthetic chemicals to trace metals that are required for life. When an organism is exposed to a toxicant, adverse effects are generally first at the sub-organismal level. There is thus a need for physiological and biochemical indicators of organismal health and sub-lethal toxicant effects. A bio-indicator, or biomarker, is a response of a living organism to environmental changes or because of exposure to contaminants. The main objectives of this study were to evaluate and investigate the possible use of biomarkers as indicators of sub-lethal (chronic) effects induced by certain chemicals/pollutants on the Mozambique tilapia, Oreochromis mossambicus. The biomarkers were evaluated as a possible sensitive and reliable measure of effects due to exposure to pollutants. This study was divided into laboratory experiments and field evaluations. The laboratory experiments consisted of the evaluation of biomarkers in exposure studies on 18-24 day old O. mossambicus juvenile fish, to determine the sub-lethal effects induced by chemicals. Acetylcholinestrase (AChE), Ethoxyresorufin-O-deethylase (EROD) and glucose levels acted as the battery of biomarkers evaluated. Thirty (30) juvenile fish were exposed for 24 and 96-hours to sub-lethal concentrations of cadmium, zinc, pentachlorophenol (PCP) and cyanide. For the field evaluation, mature Oreochromis mossambicus of both sexes, were caught during the summer and winter at the Rust de Winter Dam, Loskop Dam and Hartebeespoort Dam. Rust de Winter Dam acted as the reference site. The biomarkers evaluated during the field studies include: erythrocyte AChE, ƒx-Aminolevulinic acid dehydratase (ALAD) and plasma glucose levels, EROD and liver glycogen. The laboratory (exposure) test used during this study was not sensitive enough to obtain reliable, repeatable results. But standardised procedures were established for possible use in future studies. During the field studies, ALAD, EROD and plasma glucose showed significant results and differences between the reference and polluted sites. More accurate results could be obtained at impoundments with higher levels of pollution. Although, erythrocyte AChE and liver glycogen did not show significant results during this study, they might also show more accurate and reliable results at higher levels of pollution. In future, chemical water analysis should be carried out during field evaluation to determine what chemicals/toxicants are present in the aquatic environment. Biomarkers will show the level of effects of the toxicant on the organism, while chemical analysis will determine the specific pollutant present in the water. / Prof. J.H.J. Van Vuren
27

Integrated sub-lethal biomarker response to aqueous copper exposure in the Mozambique tilapia, Oreochromis mossambicus

Hubbard, Monique 11 September 2008 (has links)
Contamination of aquatic ecosystems (for example, dams, lakes, rivers, streams) with heavy metals (according to McDonald and Wood (1993), the metals that are of greatest concern in fresh waters are Hg, Pb, Cd, Cu, Zn, AI, Mn and Cr (approximately in order of decreasing toxicity)) has been receiving increased worldwide attention, and the literature has many publications on the topic. These amplified levels of contamination have become a global problem in both developed and developing countries and the impact of them on aquatic environments is severe due to the inability of water to disperse contaminants. To meet this threat, ecotoxicologists face a difficult challenge on how to assess the long-term impacts of metals which have already been released into the environment and which persist in sediment, water and biota. In recent years, the field of biomarker study has evolved and expanded rapidly to address this void. Biomarkers examine molecular and biochemical responses in exposed individuals in an effort to assess the status of an impacted environment and they can also serve as a basis for a Rapid Risk Assessment of Fish Health (RRAFH) employed by water quality managers. This effort to incorporate biomarkers into RRAFH research will eventually be worthwhile. Moreover, with this multidisciplinary approach, cause-effect relationships may be examined. It was in this context that the present study evaluated three biomarkers (metallothionein (MT), Na+K+ ATPase and heat shock/stress protein 70 (HSP 70)) to determine the integrated physiological responses in Oreochromis mossambicus to one metal (copper (Cu)) at a sub lethal level over the short term (96, 48, 24, 16, 12, 6, 4 and 2 h respectively). The information gained from these tests was valuable in suggesting what the baseline levels of biomarkers in O. mossambicus would be, as studies of metabolic adjustments to stress in fish have been focused on salmonids. The demand for sensitive, specific and rapid biological assays was also addressed by the development of an HSP 70 ELISA. This assay with, with additional refinement, will also prove to be a valuable tool in the management of Cu pollution in this species. Evaluation of the biomarkers in the gills of O. mossambicus indicated that this species has relatively high levels of MT in their gills compared with other species of fish. Exposure to sub lethal Cu concentrations [Cu] caused fluctuating, but not significant, levels in Na+K+ ATPase and HSP 70 during the exposure time, and the actual [Cu] in the gill seems to be the biggest factor when interpreting results. Significant decreases were found in MT levels in the gill tissue at 2 h and 12 h of exposure. HSP 70 results also indicated non-significant decreases to Cu exposure. Data from the gills analysed in the current study suggest that down-regulation in the biomarker response might be a better indicator of Cu exposure or effect in O. mossambicus. These data also suggest that further studies should rethink the amount of Cu that the fish under investigation would find sub-lethal as this metal seems to be very well regulated in this species of fish and seems frequently to non-significantly effect the chosen biomarkers. Evaluation of the biomarkers in the liver of O. mossambicus indicated that MT levels present in the liver most likely fall within the in range of normal baselevels for tilapia living in a Cu-rich environment and that HSP 70 in the liver only responds significantly to increased aqueous [Cu] at 16 h of exposure. This study also confirms current knowledge that the toxicity assessment of any pollutant, including Cu, cannot be exclusively based on one biomarker and that the true value of these biomarkers only becomes evident when they are used not as individual indicators but as integrated responses that influence one another. All these results furnish useful data for future research into the sub lethal effects of a pollutant such as Cu. The next step would be to test the usefulness of these physiological methods for detection of similar responses in natural fish populations inhabiting Cu polluted waters. This will provide a database relating the presence of Cu to biological effects at a molecular level. / Prof. J.H.J. Van Vuuren
28

Metal (Pb, Zn, Cu, Cd, Fe) uptake, tolerance and radial oxygen loss in typical wetland plants

Deng, Hong 01 January 2005 (has links)
No description available.
29

Cellular metabolism in in vitro toxicity and toxicology studies

Yu, Lok Chiu 01 January 2005 (has links)
No description available.
30

Earthworms and mycorrhizae in phytoremediation of Pb/Zn mine tailings : their effects on metal speciation, bioavailability and uptake by Leucaena leucocephala

Ma, Ying 01 January 2003 (has links)
No description available.

Page generated in 0.1227 seconds