• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 10
  • 2
  • 1
  • Tagged with
  • 26
  • 26
  • 9
  • 9
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Three phase boundary length and effective diffusivity in modeled sintered composite solid oxide fuel cell electrodes

Metcalfe, Thomas Craig 05 1900 (has links)
Solid oxide fuel cells with graded electrodes consisting of multiple composite layers yield generally lower polarization resistances than single layer composite electrodes. Optimization of the performance of solid oxide fuel cells with graded electrode composition and/or microstructure requires an evaluation of both the three phase boundary length per unit volume and the effective diffusion coefficient in order to provide insight into how these properties vary over the design space. A numerical methodology for studying the three phase boundary length and effective diffusivity in composite electrode layers with controlled properties is developed. A three dimensional solid model of a sintered composite electrode is generated for which the mean particle diameter, composition, and total porosity may be specified as independent variables. The total three phase boundary length for the modeled electrode is calculated and tomographic methods are used to estimate the fraction of this length over which the electrochemical reactions can theoretically occur. Furthermore, the open porosity of the modeled electrode is identified and the effective diffusion coefficient is extracted from the solution of the concentration of the diffusing species within the open porosity. Selected example electrode models are used to illustrate the application of the methods developed, and the resulting connected three phase boundary length and diffusion coefficients are compared. A significant result is the need for thickness-specific effective diffusivity to be determined, rather than the general volume averaged property, for electrodes with porosity between the upper and lower percolation thresholds. As the demand for current increases, more of the connected three phase boundaries become active, and therefore a greater fraction of the electrode layer is utilized for a given geometry, resulting in a higher apparent effective diffusivity compared to the same electrode geometry operating at a lower current. The methods developed in this work may be used within a macroscopic electrode performance model to investigate optimal designs for solid oxide fuel cell electrodes with stepwise graded composition and/or microstructure.
2

Three phase boundary length and effective diffusivity in modeled sintered composite solid oxide fuel cell electrodes

Metcalfe, Thomas Craig 05 1900 (has links)
Solid oxide fuel cells with graded electrodes consisting of multiple composite layers yield generally lower polarization resistances than single layer composite electrodes. Optimization of the performance of solid oxide fuel cells with graded electrode composition and/or microstructure requires an evaluation of both the three phase boundary length per unit volume and the effective diffusion coefficient in order to provide insight into how these properties vary over the design space. A numerical methodology for studying the three phase boundary length and effective diffusivity in composite electrode layers with controlled properties is developed. A three dimensional solid model of a sintered composite electrode is generated for which the mean particle diameter, composition, and total porosity may be specified as independent variables. The total three phase boundary length for the modeled electrode is calculated and tomographic methods are used to estimate the fraction of this length over which the electrochemical reactions can theoretically occur. Furthermore, the open porosity of the modeled electrode is identified and the effective diffusion coefficient is extracted from the solution of the concentration of the diffusing species within the open porosity. Selected example electrode models are used to illustrate the application of the methods developed, and the resulting connected three phase boundary length and diffusion coefficients are compared. A significant result is the need for thickness-specific effective diffusivity to be determined, rather than the general volume averaged property, for electrodes with porosity between the upper and lower percolation thresholds. As the demand for current increases, more of the connected three phase boundaries become active, and therefore a greater fraction of the electrode layer is utilized for a given geometry, resulting in a higher apparent effective diffusivity compared to the same electrode geometry operating at a lower current. The methods developed in this work may be used within a macroscopic electrode performance model to investigate optimal designs for solid oxide fuel cell electrodes with stepwise graded composition and/or microstructure.
3

SOLID ADSORPTION MEDIA FOR HF & HCl FOLLOWING REFRIGERANT DESTRUCTION

AKUETTEH, TEKAI 02 August 2013 (has links)
This work explored the viability of two solid adsorbents, limestone and cement powder, for use in a flow-through packed-bed column for HCl and HF gas neutralization following refrigerant destruction. Neutralization tests performed at 408 K using 5% HCl in N2 and 5% HF in N2, showed that limestone had a significantly higher adsorption capacity for both HF & HCl, future tests therefore utilized limestone only. The results showed that ~49% of the fed HCl and between 7.8% - 16.2% of the fed HF gases were adsorbed by 0.007 kg of limestone for a 6.67×10-6 m3/s (STP) flow rate over 30 – 180 minutes. Applying the shrinking core model, effective diffusivities (De) of HCl & HF into the limestone particles were 1.5×10-9 & 2.2×10-9 m2/s respectively. Under these conditions, complete particle conversion times were 227 hours for HCl–limestone and 154 hours for HF–limestone. Estimating De values at plasma-reactor temperatures gave 5.61x10-9 m2/s & 8.24x10-9 m2/s for HCl–limestone and HF–limestone respectively. Correspondingly, particle consumption times were reduced to 61 and 41 hours for HCl–limestone and HF–limestone. Considering the conversion times for the 1 mm particle sizes, shorter conversion times would require micron-scale particle sizes, suitable for entrained flow but not for a packed-bed arrangement.
4

Experimental and theoretical investigation of mass transport in porous media of a PEM fuel cell

Pant, Lalit M Unknown Date
No description available.
5

Fluidized Bed, Microwave And Microwave Assisted Fluidized Bed Drying Of Macaroni Beads

Goksu, Emel Iraz 01 January 2003 (has links) (PDF)
This study is aimed to compare the fluidized bed and microwave drying with microwave assisted fluidized bed drying. For this purpose, macaroni beads (2.4&plusmn / 0.08 mm diameter) were dried from about 20% to 12% moisture content in a fluidized bed of 7.6 cm diameter, in a domestic microwave oven with a power of 609 W and in the fluidized bed placed in the microwave oven conditions. In the experiments with the fluidized bed three air temperatures / 50, 60 and 70&deg / C at an air velocity of 2.3 m/s and in those with the microwave oven two power levels / 50% and 100% were used. The drying curves indicated that the drying rate increased with the air temperature and microwave power in each drying method. Microwave assisted fluidized bed drying reduced the drying time by about 50% and 11% on the average compared with the fluidized bed and microwave drying, respectively. Therefore, it was concluded that the drying time was reduced more by the effect of microwave energy than the fluidization. The effective diffusivities in the fluidized bed and microwave assisted fluidized bed drying were found to be in the order of 4.125x10-11 and 8.772x10-11 m2/s on the average, respectively. The effective diffusivities for the fluidized bed drying were fitted to an Arrhenius type of equation and the magnitude of the activation energy was found to be in the order of 12595 kJ/kg mol.
6

Estudo das operações combinadas da desidratação osmotica a vacuo : defumação liquida e secagem em files de bonito (sarda sarda) / Study of the combined operations of the vacuum osmotic dehydration

Vivanco Pezantes, David 13 February 2006 (has links)
Orientador: Miriam Dupas Hubinger / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-05T14:58:57Z (GMT). No. of bitstreams: 1 VivancoPezantes_David_D.pdf: 5009400 bytes, checksum: 9209dcce381309e83df6dfa19aa69001 (MD5) Previous issue date: 2006 / Doutorado / Doutor em Engenharia de Alimentos
7

Three phase boundary length and effective diffusivity in modeled sintered composite solid oxide fuel cell electrodes

Metcalfe, Thomas Craig 05 1900 (has links)
Solid oxide fuel cells with graded electrodes consisting of multiple composite layers yield generally lower polarization resistances than single layer composite electrodes. Optimization of the performance of solid oxide fuel cells with graded electrode composition and/or microstructure requires an evaluation of both the three phase boundary length per unit volume and the effective diffusion coefficient in order to provide insight into how these properties vary over the design space. A numerical methodology for studying the three phase boundary length and effective diffusivity in composite electrode layers with controlled properties is developed. A three dimensional solid model of a sintered composite electrode is generated for which the mean particle diameter, composition, and total porosity may be specified as independent variables. The total three phase boundary length for the modeled electrode is calculated and tomographic methods are used to estimate the fraction of this length over which the electrochemical reactions can theoretically occur. Furthermore, the open porosity of the modeled electrode is identified and the effective diffusion coefficient is extracted from the solution of the concentration of the diffusing species within the open porosity. Selected example electrode models are used to illustrate the application of the methods developed, and the resulting connected three phase boundary length and diffusion coefficients are compared. A significant result is the need for thickness-specific effective diffusivity to be determined, rather than the general volume averaged property, for electrodes with porosity between the upper and lower percolation thresholds. As the demand for current increases, more of the connected three phase boundaries become active, and therefore a greater fraction of the electrode layer is utilized for a given geometry, resulting in a higher apparent effective diffusivity compared to the same electrode geometry operating at a lower current. The methods developed in this work may be used within a macroscopic electrode performance model to investigate optimal designs for solid oxide fuel cell electrodes with stepwise graded composition and/or microstructure. / Applied Science, Faculty of / Mechanical Engineering, Department of / Graduate
8

Radio frequency enhanced extraction of an anti-cancer compound from porous media

Izadifar, Mohammad 09 March 2009
Podophyllotoxin is a natural medicine possessing an outstanding anti-tumour activity. It can be extracted from the rhizome of Podophillum peltatum (American Podophyllum). Volumetric heating of a packed bed of particles including solvent during the extraction can eliminate the solvent pre-heating time and provide uniform and quick heating of the bed. RF-assisted extraction has a potential to be a promising extraction alternative over conventional methods. The characterization and assessment of RF-assisted extraction of podophyllotoxin is crucial. Thermal properties including specific heat capacity, thermal conductivity, and thermal diffusivity of a packed bed of P. peltatum with and without ethanol solutions were determined and the associated multiples regression equations were obtained for the purpose of thermal analysis of RF-assisted packed bed extraction process and related modeling investigations.<p> The dielectric properties of the packed bed of rhizome particles were measured from 10 to 30 MHz using a precision LCR meter and a liquid test fixture. The effects of temperature, particle moisture content, volumetric concentration of ethanol and bed porosity on the dielectric constant, dielectric loss factor and power penetration depth were investigated. The dielectric loss factor significantly increased with the particle moisture content for the beds with 100% and 70% ethanol but not with 30% ethanol. The dielectric loss factor was proportional to temperature directly and to frequency inversely. With 30% ethanol (and therefore 70% water), the dielectric loss factor of the bed dramatically increased compared to 70% and 100% ethanol. Porosity had a significant effect on the dielectric constant but not on the dielectric loss factor. The power penetration depth of a packed bed with 100% ethanol was significantly larger than those of the packed bed with 30% and 70% ethanol. Empirical regression equations were developed for simulation and design of an RF-assisted packed bed extraction of podophyllotoxin.<p> A RF-transparent batch reactor was made of glass filled Teflon and the extraction kinetics of podophyllotoxin was characterized. The effects of temperature, ethanol volumetric concentration, solid/liquid ratio, RF heating and particle moisture content on the extraction rate and yield of podophyllotoxin were investigated at different extraction conditions. A generalized diffusion mathematical model taking into account three major particle geometries was developed and coupled with genetic algorithm for determination of effective diffusivity and partition coefficient through an inverse simulation approach. The approach was first verified by reported experimental data of andrographolide extraction followed by determining the effective diffusivity and partition coefficient of podophyllotoxin for different conditions. The optimum batch extraction condition was achieved with 30% ethanol-water solution at 53¢XC. A prototype was developed for RF-assisted extraction of podophyllotoxin using two optical and RF-transparent reactors with horizontal and vertical orientations. Applying the optimum conditions obtained from batch experiments, the potential of RF heating for providing a uniform temperature in the packed bed was evaluated. The effect of solvent dielectric loss factor on uniform RF heating was investigated and the chemical effect of NaCl used for increasing dielectric loss factor of the solvent on podophyllotoxin was assessed. The horizontal packed bed demonstrated a large temperature gradient across the thickness of the bed during RF heating; however, a uniform RF heating was achieved when the vertical packed bed reactor was used for RF-assisted extraction of podophyllotoxin. The concentration of 2.5 g NaCl/L of the solvent at the temperature controller set point of 40aC provided a relatively good uniform temperature of 50aC within the bed. Evaluating three flow rates of 130, 160 and 200 ml/min for the solvent of 30% ethanol with 2.5 g NaCl/L indicated that the flow rate of 160 ml/min could provide better temperature overlap of four positions of the bed height.
9

Usage Of Spouted Bed And Microwave Assisted Spouted Bed Dryers In Bulgur Production

Kahyaoglu, Leyla Nesrin 01 August 2009 (has links) (PDF)
The main objective of this study was to investigate the effect of spouted bed and microwave assisted spouted bed drying on drying rates and quality parameters of bulgur. The drying experiments were performed at three air temperatures (50, 70, 90oC) and at two microwave powers (288 W, 624 W). Quality parameters were selected as bulk density, apparent density, apparent porosity, internal porosity, microstructure analysis, and color for dried cooked wheat / yield and water absorption capacity for bulgur. The drying rate increased with air temperature and microwave power. Microwave assisted spouted bed drying at microwave power of 288W and 624 W reduced drying time by at least 60% and 85%, respectively compared to spouted bed drying. The effective moisture diffusivities of bulgur in the spouted bed and microwave assisted spouted bed drying were found to be 2.356x10-10 and 8.398x10-10 m2/s on the average, respectively. The effect of air temperature on product quality except color was not significant in spouted bed drying. Interior kernel porosity, sphericity and L* value of dried cooked wheat increased with air temperature and microwave power. Yield and water absorption capacity of bulgur tended to decrease as microwave power increased. According to SEM analysis, more porous structure was observed in wheat samples dried in microwave assisted spouted bed compared to air dried ones. In microwave assisted spouted bed drying, lower water absorption capacity, bulk density and apparent density, higher sphericity and lighter color were observed as compared to spouted bed drying.
10

Effect Of Pretreatment And Air Temperature On The Drying Rate, Rehydration Capacity And Color Of Artichoke

Parin, Harika 01 October 2004 (has links) (PDF)
In this study, cleaned artichoke hearts belonging to three different ages were dried under constant external conditions at 50, 60 and 70&deg / C using an air inlet velocity of 8.1 m/s. The sample to be dried was pretreated either by keeping it in distilled water or 1% (w/v) ascorbic acid or sodium bisulfite solutions for 30 minutes at the corresponding drying temperatures. Further, for comparison, the use of citric acid solution, increasing the concentrations of the solutions, reducing the pretreatment time, effect of degree of trimming and halving the samples were investigated. The experimental drying rate data were treated to estimate the effective diffusivities and the effect of temperature together with the activation energy according to an Arrhenius type relation. For the product quality, rehydration capacity of the dried samples in water at 20&deg / C as well as their color were determined. As expected, the rate results indicated an increase in the drying rate hence the effective diffusivity with temperature for the distilled water and ascorbic acid pretreated samples. However, a reduction in the rate at the high drying temperature when sodium bisulfite solution used was attributed to the clogging of the pores by the precipitated solid due to rapid evaporation at the surface. Similarly, rehydration capacity and color of the water treated samples were enhanced with temperature where with the solution treated ones a reverse effect was observed. It is also found that the rehydration data could be well represented by Peleg equation. Further, when citric acid solution was used for pretreatment, the results were quite identical to those of ascorbic acid. Also, increasing the ascorbic acid concentration to 2% (w/v) improved color whereas decreasing the dipping time increased discoloration. Finally, as an important parameter, the degree of trimming of the hearts proved to be highly effective on the rate and the other studied parameters as well as the post harvest and storage time.

Page generated in 0.0639 seconds