• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nestability spreje u trysek typu effervescent / Unsteadiness in sprays of effervescent atomizers

Beinstein, Zbyněk January 2009 (has links)
Master thesis focused on the research of the effervescent atomizers. Effervescent atomizers belong to a group of two-phase atomizers, which are often used in combustion applications. Right there in combustion applications, the degree of the stability sprays has a significant impact on combustion efficiency and exhaust gas emissions. The main aim of this work was to asses the level of spray unsteadiness depending on the atomizer design and its operating mode. The effect of construction was studied on the diameter and length of mixing chamber, and then on the size, number and location of aeration holes. Seventeen specific variants of the atomizer were constructed by different combinations of these design parameters. Each of these variants was measured in three operating modes, which were represented by a liquid pressure at the inlet to the atomizer and gas-to-liquid mass flow ratio (GLR). To evaluate the level of spray unsteadiness was used a methodology, which compares the ideal element´s distribution into the interparticle time bin, defined for the ideal (stable) spray, with the experimentally observed distribution. The laser measurement system P/DPA (Phase Doppler Particle Analyzer) was used to determine the experimental interparticle distribution. The result of the comparison of the ideal and the experimental distribution was the parameter , which expresses the level of spray unsteadiness for a specific atomizer and operating mode. With that parameter it was possible to compare the individual atomizers and determinate to the benefit of various construction´s correction of the atomizer. The results showed the recommendation for the modifications of the atomizer, creating a spray with a minimum level of spray´s unsteadiness. For the surveyed atomizer and his individual costruction´s variations the drawing was made.
2

Computational Study of Internal Two Phase Flow in Effervescent Atomizer in Annular Flow Regime

Mohapatra, Chinmoy Krushna 12 September 2016 (has links)
No description available.
3

Vliv provozních parametrů na kvalitu rozprašování kapalin u dvou-médiových trysek / Influence of operational conditions on spray characteristics of twin-fluid atomizers

Zaremba, Matouš January 2013 (has links)
This master’s thesis deals with measurement of spray characteristics of Effervescent atomizers intended for burning waste and heavy fuels. Atomizers were tested on cold test bench by means of Phase Doppler Anemometry. Spray characteristics were evaluated for many different regimes of pressure, temperature and Gas to liquid ratio. The aim of this measurement is to compare flow regimes and their influence on the quality of spray characteristics. The theoretical part describes basic fundamental principles of liquid atomization, effervescent atomization and principles of laser diagnostic methods. The practical part is engaged with improvements in test bench and setting up and optimization of the laser measuring system. Results contain visualization of spray, velocity profiles and drop size distribution in various operating flow regimes of the jet.
4

Experimentální analýza procesu rozpadu kapaliny u šumivé trysky / Experimental Analysis of the Liquid Breakup Process of an Effervescent Atomizer

Zaremba, Matouš January 2018 (has links)
The thesis deals with experimental research of mechanism of liquid breakup at twin-fluid atomizers. Four different atomizers were examined at the beginning of the research. Two of them were of standard design (Y-jet and effervescent nozzles), and the rest two atomizers were developed as a part of the thesis (so called CFT and inversed effervescent atomizers). Results show that only the inversed effervescent atomizer was capable of generating stable spray under examined conditions due to the specific breakup mechanism. This mechanism is similar to what was observed in effervescent atomizers. However, the mixing process inside the inversed effervescent atomizer is very different. The specific breakup mechanism was then defined as the main scope of the thesis. It was investigated by the high-speed imaging. The images were then processed by proper orthogonal decomposition and by fast Fourier transformation. Spray spatial development was examined using phase Doppler anemometer. The data was analyzed to describe the dynamics of the spray. A detailed description of the breakup mechanism is made from the combination of the experimental and post-processing techniques. The thesis brings new insight into the understanding of the liquid breakup mechanism and shows a potential for a further development of the inversed effervescent atomizer.

Page generated in 0.0515 seconds