• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental planning and sequential kriging optimization using variable fidelity data

Huang, Deng 09 March 2005 (has links)
No description available.
2

Efficient Global Optimization of Multidisciplinary System using Variable Fidelity Analysis and Dynamic Sampling Method

Park, Jangho 22 July 2019 (has links)
Work in this dissertation is motivated by reducing the design cost at the early design stage while maintaining high design accuracy throughout all design stages. It presents four key design methods to improve the performance of Efficient Global Optimization for multidisciplinary problems. First, a fidelity-calibration method is developed and applied to lower-fidelity samples. Function values analyzed by lower fidelity analysis methods are updated to have equivalent accuracy to that of the highest fidelity samples, and these calibrated data sets are used to construct a variable-fidelity Kriging model. For the design of experiment (DOE), a dynamic sampling method is developed and includes filtering and infilling data based on mathematical criteria on the model accuracy. In the sample infilling process, multi-objective optimization for exploitation and exploration of design space is carried out. To indicate the fidelity of function analysis for additional samples in the variable-fidelity Kriging model, a dynamic fidelity indicator with the overlapping coefficient is proposed. For the multidisciplinary design problems, where multiple physics are tightly coupled with different coupling strengths, multi-response Kriging model is introduced and utilizes the method of iterative Maximum Likelihood Estimation (iMLE). Through the iMLE process, a large number of hyper-parameters in multi-response Kriging can be calculated with great accuracy and improved numerical stability. The optimization methods developed in the study are validated with analytic functions and showed considerable performance improvement. Consequentially, three practical design optimization problems of NACA0012 airfoil, Multi-element NLR 7301 airfoil, and all-moving-wingtip control surface of tailless aircraft are performed, respectively. The results are compared with those of existing methods, and it is concluded that these methods guarantee the equivalent design accuracy at computational cost reduced significantly. / Doctor of Philosophy / In recent years, as the cost of aircraft design is growing rapidly, and aviation industry is interested in saving time and cost for the design, an accurate design result during the early design stages is particularly important to reduce overall life cycle cost. The purpose of the work to reducing the design cost at the early design stage with design accuracy as high as that of the detailed design. The method of an efficient global optimization (EGO) with variable-fidelity analysis and multidisciplinary design is proposed. Using the variable-fidelity analysis for the function evaluation, high fidelity function evaluations can be replaced by low-fidelity analyses of equivalent accuracy, which leads to considerable cost reduction. As the aircraft system has sub-disciplines coupled by multiple physics, including aerodynamics, structures, and thermodynamics, the accuracy of an individual discipline affects that of all others, and thus the design accuracy during in the early design states. Four distinctive design methods are developed and implemented into the standard Efficient Global Optimization (EGO) framework: 1) the variable-fidelity analysis based on error approximation and calibration of low-fidelity samples, 2) dynamic sampling criteria for both filtering and infilling samples, 3) a dynamic fidelity indicator (DFI) for the selection of analysis fidelity for infilled samples, and 4) Multi-response Kriging model with an iterative Maximum Likelihood estimation (iMLE). The methods are validated with analytic functions, and the improvement in cost efficiency through the overall design process is observed, while maintaining the design accuracy, by a comparison with existing design methods. For the practical applications, the methods are applied to the design optimization of airfoil and complete aircraft configuration, respectively. The design results are compared with those by existing methods, and it is found the method results design results of accuracies equivalent to or higher than high-fidelity analysis-alone design at cost reduced by orders of magnitude.
3

Shape optimization of axial cooling fan via 3D CFD simulation and surrogate modeling / Formoptimering av axiel kylningsfläkt via 3D CFD-simulering och surrogatmodellering

Granlöf, Martin January 2021 (has links)
Due to legislative reasons and environmental concerns the automotive and transport sector are shifting their focus from traditional internal combustion engine (ICE) vehicles to development of battery electric vehicles (BEVs). This brings new challanges to design of cooling systems where axial fans are one of the key components. Axial fans are usually designed with regards to a certain operating condition and outside this region the efficiency of the fan drops drastically. Due to difficulty in specifying the exact operational parameters when placed in a car, post-design optimization may be necessary to ensure maximized performance. This thesis focuses on fan blade shape optimization through mesh morphing using the surrogate based optimization algorithm called Efficient Global Optimization (EGO). The target fans was a 9 bladed prototype fan by Johnson Electric with uneven blade spacing. The optimization uses steady state Reynolds-averaged Navier-Stokes (RANS) simulations to evaluate the fan designs and a Bezier curve parametrization in order to change the fan blade shape together with mesh morphing. The simulation setup was evaluated before peceding with the optimization, and showed good agreement close to intended operational conditions. Differences in turbulence modeling treatments were also evaluated in order to have a satisfactory agreement with measurement data. The EGO algorithm manages to provide fan designs with higher total-to-static efficiency at several different operational conditions. Evaluation of the optimized fan designs was limited to comparison with the provided measurement data and corrensponding simulations. Acoustic evaluation of selected fan designs is also attemped, but further work is required in order for the study to result in a quantitative comparison. / På grund av lagstiftning och miljöpåverkan har bil- och transportindustrin börjat skifta fokus från traditionella förbränningsfordon till utveckling av batteridrivna elbilar. Med detta medföljer nya utmaningar kring kylsystemsdesign där axiella fläktar är en av huvudkomponenterna hos systemet. Axiella fläktar är vanligtvis designade kring ett specifikt drifttillstånd och utanför detta har fläkten avsevärt lägre verkningsgrad. På grund av svårigheter att specificera detta drifttillstånd med hög precision, speciellt när fläkten monteras i en bil, kan efterdesigns-optimering vara nödvändigt för att uppnå maximal prestanda. Denna avhandling fokuserar på form-optimering av fläkt via mesh morphing med hjälp av den surrogat-baserade optimeringsalgoritmen Efficient Global Optimization (EGO). Fläkten som optimerades var en prototypfläkt designad av Johnson Electric med 9 fläktblad och icke-symmetriska mellanrum mellan bladen. I optimeringsprocessen användes icke-tidsberoende Reynolds-averaged Navier-Stokes (RANS) simuleringar för att utvärdera fläktdesignerna och parametrisering med hjälp av Bezier kurvor och mesh morphing för att ändra fläktbladen. Simulerings-uppställningen utvärderades innan optimeringen och bra överensstämning nära avsett driftstillstånd kunde påvisas. Skillnader i turbulens-modelering utvärderades även för att få en tillfredställande överensstämning med mätdata. EGO-algoritmen klarar att förse fläktdesigner med högre total-till-statisk verkningsgrad vid flera olika driftstillstånd. Utvärdering av fläktdesignerna var dock begränsad till jämförelse med mätdata och motsvarande simuleringsdata. En akustik utvärdering av utvalda fläkt-designer försöktes, men mer arbete krävs för att studien ska erhålla en kvantitativ jämförelse.
4

Optimisation de dispositifs de contrôle actif pour des écoulements turbulents décollés / Optimization of active control devices for separated turbulent flows

Labroquère, Jérémie 20 November 2014 (has links)
Les stratégies de contrôle d’écoulement, telles que le soufflage / aspiration, ont prouvé leur efficacité à modifier les caractéristiques d’écoulement à des fins diverses en cas de configurations usuellement simples. Pour étendre cette approche sur des cas industriels, la simulation de dispositifs à échelle réelle et l’optimisation des paramètres de contrôle s’avèrent nécessaires. L’objectif de cette thèse est de mettre en place une procédure d’optimisation pour résoudre cette catégorie de problèmes. Dans cette perspective, l’organisation de la thèse est divisé en trois parties. Tout d’abord, le développement et la validation d’un solveur d’écoulement turbulent compressible instationnaire, résolvant les équations de Navier-Stokes moyennées (RANS) dans le cadre d’une discrétisation mixte de type éléments finis / volumes finis (MEV) sont présentés. Une attention particulière est portée sur la mise en œuvre de modèles numériques de jet synthétique à l’aide de simulations sur une plaque plane. Le deuxième axe de la thèse décrit et valide la mise en œuvre d’une méthode d’optimisation globale basée sur un modèle réduit du type processus gaussien (GP), incluant une approche de filtrage d’erreurs numériques liées aux observations. Cette méthode EGO (Efficient Global Optimization), est validée sur des cas analytiques bruités 1D et 2D. Pour finir, l’optimisation de paramètres de contrôle de jet synthétique sur deux cas test pertinents pour les industriels : un profil d’aile NACA0015, avec objectif de maximiser la portance moyenne et une marche descendante avec objectif de minimiser la longueur de recirculation moyenne. / Active flow control strategies, such as oscillatory blowing / suction, have proved their efficiency to modify flow characteristics for various purposes (e.g. skin friction reduction, separation delay, etc.) in case of rather simple configurations. To extend this approach to industrial cases, the simulation of a large number of devices at real scale and the optimization of parameters are required. The objective of this thesis is to set up an optimization procedure to solve this category of problems. In this perspective, the organization of the thesis is split into three main parts. First, the development and validation of an unsteady compressible turbulent flow solver using the Reynolds-Averaged Navier-Stokes (RANS) using a Mixed finite-Element/finite-Volume (MEV) framework is described. A particular attention is drawn on synthetic jet numerical model implementation by comparing different models in the context of a simulation over a flat plate. The second axis of the thesis describes and validates the implementation of a Gaussian Process surrogate model based global optimization method including an approach to account for some numerical errors during the optimization. This EGO (Efficient Global Optimization) method, is validated on noisy 1D and 2D analytical test cases. Finally, the optimization of two industrial relevant test cases using a synthetic jet actuator are considered: a turbulent flow over a NACA0015 for which the time-averaged lift is regarded as the control criterion to be maximized, and an incompressible turbulent flow over a Backward Facing Step for which the time-averaged recirculation length is minimized.
5

Efficient Sequential Sampling for Neural Network-based Surrogate Modeling

Pavankumar Channabasa Koratikere (15353788) 27 April 2023 (has links)
<p>Gaussian Process Regression (GPR) is a widely used surrogate model in efficient global optimization (EGO) due to its capability to provide uncertainty estimates in the prediction. The cost of creating a GPR model for large data sets is high. On the other hand, neural network (NN) models scale better compared to GPR as the number of samples increase. Unfortunately, the uncertainty estimates for NN prediction are not readily available. In this work, a scalable algorithm is developed for EGO using NN-based prediction and uncertainty (EGONN). Initially, two different NNs are created using two different data sets. The first NN models the output based on the input values in the first data set while the second NN models the prediction error of the first NN using the second data set. The next infill point is added to the first data set based on criteria like expected improvement or prediction uncertainty. EGONN is demonstrated on the optimization of the Forrester function and a constrained Branin function and is compared with EGO. The convergence criteria is based on the maximum number of infill points in both cases. The algorithm is able to reach the optimum point within the given budget. The EGONN is extended to handle constraints explicitly and is utilized for aerodynamic shape optimization of the RAE 2822 airfoil in transonic viscous flow at a free-stream Mach number of 0.734 and a Reynolds number of 6.5 million. The results obtained from EGONN are compared with the results from gradient-based optimization (GBO) using adjoints. The optimum shape obtained from EGONN is comparable to the shape obtained from GBO and is able to eliminate the shock. The drag coefficient is reduced from 200 drag counts to 114 and is close to 110 drag counts obtained from GBO. The EGONN is also extended to handle uncertainty quantification (uqEGONN) using prediction uncertainty as an infill method. The convergence criteria is based on the relative change of summary statistics such as mean and standard deviation of an uncertain quantity. The uqEGONN is tested on Ishigami function with an initial sample size of 100 samples and the algorithm terminates after 70 infill points. The statistics obtained from uqEGONN (using only 170 function evaluations) are close to the values obtained from directly evaluating the function one million times. uqEGONN is demonstrated on to quantifying the uncertainty in the airfoil performance due to geometric variations. The algorithm terminates within 100 computational fluid dynamics (CFD) analyses and the statistics obtained from the algorithm are close to the one obtained from 1000 direct CFD based evaluations.</p>

Page generated in 0.107 seconds