Spelling suggestions: "subject:"cgg number"" "subject:"ggg number""
1 |
Patterns of reproductive allocation in aphidophagous lady beetles and their response to various levels of resource availabilityVargas Orozco, German Andres January 1900 (has links)
Doctor of Philosophy / Department of Entomology / J.P. Michaud / James R. Nechols / The manner in which organisms allocate reproductive resources for reproduction is a central question with respect to life history theory. The main objectives of this research were to i) examine lifetime patterns of reproductive allocation in the lady beetles Coleomegilla maculata (DeGeer) and Hippodamia convergens (Guérin-Menéville) (Coleoptera: Coccinellidae) while manipulating environmental conditions that affect female body size (i.e., larval food supply), ii) to study the interaction between factors underlying female body size and the resources available during reproduction, and iii) to explore the maternal effects of female size and age on the development and survival of progeny. When different size classes of females were produced and adult females were maintained with unlimited food, there were no differences in egg size across female size in C. maculata, but egg size increased over time in all females. In H. convergens, only larger females increased egg size over time, and they laid larger eggs, on average, than did small females. Maternal body size was positively correlated with the number of eggs laid per day in both species. When three size classes of females were subjected to a fluctuating food supply as adults, female size was again positively correlated with egg and daily fecundity. Whereas both species varied daily fecundity in response to adult food supply, egg size was unaffected and demonstrated a fixed pattern of change with female age and species-specific effects of maternal body size. To observe maternal effects in H. convergens, three female size classes were again produced and progeny were reared from three different periods of each female‟s reproductive life. Offspring from later oviposition days and larger females developed faster and achieved larger adult size than those reared from earlier oviposition days. Egg size showed inconsistent correlations with developmental parameters and adult progeny size, so other, more cryptic, maternal signals were inferred to signal phenotype development in progeny. A fixed program of producing faster-developing offspring that mature to larger sizes late in the oviposition cycle is adaptive for exploiting ephemeral aphid blooms that exhibit predictable dynamics of declining prey abundance and increasing competition. In the case of H. convergens, resource limitation during development constrained not only body size, fecundity and egg size, but also maternal ability to manipulate progeny phenotypes.
|
2 |
An investigation of genetic and reproductive differences between Faroe Plateau and Faroe Bank cod (Gadus morhua L.)Petersen, Petra Elisabeth January 2014 (has links)
The Atlantic cod (Gadus morhua L.) fishery is of great economic importance to the Faroese economy. There are two separately managed cod stocks around the Faroe Islands, the Faroe Plateau and the Faroe Bank cod. Both have experienced dramatic decreases in size and informed management decisions are vital for both stock viability and exploitation. The stocks are geographically isolated by an 800 m deep channel and water temperatures are on average 1 – 2 ºC higher on the Faroe Bank than on the Faroe Plateau. There are clear phenotypic differences between the stocks; in particular, the markedly higher growth rate for the Faroe Bank cod has caught public and scientific attention. There is continuing debate regarding the relative importance of genetics and environmental contributions to the contrasting phenotypes. Analyses of reproductive parameters (field data and experimental captive spawnings) as well as analyses of microsatellite and single nucleotide polymorphism (SNP) markers were undertaken to better resolve the issue. Field data as well as data from experimental captive spawnings provided evidence of reproductive differences between Faroe Plateau and Faroe Bank cod. Peak spawning occurred earlier on the Faroe Plateau than on the Faroe Bank and this difference in timing of spawning was maintained in captivity. In particular, differences in sizes of eggs (average diameters of 1.40 and 1.30 mm for Faroe Plateau and Faroe Bank cod eggs, respectively) and indirect evidence of greater volumes spawned by the Faroe Bank females suggested stock differences with respect to egg size – egg number trade-off. It was hypothesised that the strategy adopted by cod on the Faroe Bank, with a higher number of smaller eggs, evolved in response to a more hostile environment (bare seabed and higher exposure to predators) experienced by early life stages in this area. Experimental captive spawnings with Faroe Bank cod showed a large interfamily skew in survival rates of cod eggs and fry. Egg size was identified as a useful indicator of survival rates in the egg stage, but egg survival rates could not be used to predict viability in later developmental stages, thus highlighting the importance of employing some sort of genetic monitoring of cod fry to ensure sufficient family representation in the progeny. While no tank effect was evident concerning fry survival, a significant tank effect was identified concerning body sizes of fry. Microsatellite data were analysed using large sample sizes of Faroe Plateau and Faroe Bank cod with the Faroe Plateau divided into two locations, Faroe Plateau North-East and Faroe Plateau West (cod from each of the two were known to belong to separate spawning grounds). Two Norwegian coastal cod samples were included as outlier populations. While no genetic differentiation was detected between the two Faroe Plateau locations, these analyses revealed a detectable, albeit relatively modest, degree of genetic differentiation between cod from the Faroe Plateau and the Faroe Bank (FST = 0.0014 and 0.0018; DJost_EST = 0.0027 and 0.0048; P < 0.0001 and P < 0.001 for the Faroe Plateau North-East – Faroe Bank and the Faroe Plateau West – Faroe Bank comparisons). These values were several times smaller than those between Faroese and Norwegian coastal cod (pairwise FST and DJost_EST values in the range of 0.0061 – 0.0137 and 0.0158 – 0.0386, respectively). Despite recent reductions in census population sizes for Faroe Plateau and, particularly, Faroe Bank cod, genetic diversity estimates were comparable to the ones observed for Norwegian coastal cod and there was no evidence of significant genetic bottlenecks. Lastly, data for one of the markers (Gmo132) indicated genotype-dependent vertical distribution of cod (as investigated for Faroe Plateau North-East cod). Contrary to some previously published studies, analysis of SNPs of two candidate genes for adaptive divergence, the hemoglobin gene Hb-ß1 and the transferrin gene Tf1, failed to detect differentiation between samples of Faroe Plateau and Faroe Bank cod analysed in this thesis. Of 3533 novel SNPs simultaneously discovered and genotyped by restriction-site associated DNA (RAD) sequencing, 58 showed evidence of genetic differentiation between Faroe Plateau North-East and Faroe Bank cod (P < 0.05). No single locus was fixed for different alleles between Faroe Plateau and Faroe Bank cod. A set of eight informative SNPs (FST values between Faroe Plateau and Faroe Bank samples > 0.25; P < 0.0005) were selected for validation in larger samples, that included cod from both Faroe Plateau areas and the Faroe Bank as well as Norwegian coastal and White Sea cod. Six out of the eight loci amplified successfully with a PCR-based method and there was 100 % concordance between genotypes of individuals screened by both techniques. Due to ascertainment bias, the SNPs should only be applied with caution in a broader geographical context. Nonetheless, these SNPs did confirm the genetic substructure suggested for Faroese cod by microsatellite analyses. While no genetic differentiation was evident between the two Faroe Plateau locations, significant genetic differentiation was evident between Faroe Plateau and Faroe Bank cod at five of the SNPs (FST values in the range of 0.0383 – 0.1914). This panel of five SNPs could confidently be used to trace groups of Faroe Plateau and Faroe Bank cod to their population of origin. In conclusion, multiple lines of evidence demonstrate that Faroe Plateau and Faroe Bank cod are truly two genetically distinct populations. While the findings contribute to a broader understanding of the biology and the genetics of Faroe Plateau and Faroe Bank cod, the novel SNPs developed may provide a valuable resource for potential future demands of i.e. genetic stock identification methods.
|
Page generated in 0.0519 seconds