Spelling suggestions: "subject:"cgg which"" "subject:"ggg which""
1 |
Semisynthetic studies on lysozymeHoyland, D. A. January 1983 (has links)
No description available.
|
2 |
Protein folding and interactions examined by electrospray ionisation mass spectrometryChung, Evonne W. January 1998 (has links)
No description available.
|
3 |
N-glycosylation and gelling properties of ovomucin from egg whiteOffengenden, Marina Unknown Date
No description available.
|
4 |
Affinity precipitation of proteasesCampbell, Alyson Ann January 1996 (has links)
No description available.
|
5 |
Study of the mechanisms of protein foldingMorgan, Charles J. January 1998 (has links)
No description available.
|
6 |
Reduce the IgE binding ability of egg white proteins by fermentationLi, Sen Unknown Date
No description available.
|
7 |
Reduce the IgE binding ability of egg white proteins by fermentationLi, Sen 11 1900 (has links)
Egg is one of the major food allergens that affects 1.6~3.2% of the infants and young children population. The objective of this study is to reduce the egg white IgE binding ability by lactobacilli or Aspergillus oryzae fermentation. Modifications of egg white proteins during fermentation were analyzed by Ninhydrin method, Ellman method, SDS-PAGE, ELISA, and MALDI-TOF-MS. Tryptone supplementation and acidification are necessary to grow lactobacilli in egg white. Egg whites were fermented by L sanfranciscensis, L. sakei, and L. delbrueckii subsp. delbrueckii individually for 96 h; and Aspergillus oryzae for 120 h. The IgE binding ability of egg white was significantly reduced (~50%) by L. delbrueckii subsp. delbrueckii after 48 h of incubation and almost eliminated by Aspergillus oryzae after 24 h of inoculation. In addition to slight modification of ovomucoid (the dominant egg allergen), no substantial protein degradation was observed during fermentation. / Food Science and Technology
|
8 |
Transformation of the X-33 Strain of <i>Pichia pastoris</i> and the Small Scale Expression of the N103H Mutant Hen Egg White Lysozyme GeneSamalla, Praneeth 10 June 2015 (has links)
No description available.
|
9 |
Protein purification using expanded bed chromatographyRamat, Fabien M 14 January 2004 (has links)
Expanded bed chromatography using ion-exchange media is a powerful first step in purification processes. Expanded bed chromatography can be used to extract components from complex and viscous solution. This can be achieved because of the void created between adsorbent particles where as in packed bed chromatography, the adsorbent is too compact and dense for a complex feed stock to flow through. Expanded bed chromatography was used to purify bovine serum albumin (BSA) from chicken egg white (CEW). The high viscosity of CEW presents a unique challenge for efficient large-scale protein purification. This project aimed to optimize and evaluate a separation method that is believed to be particularly suitable for high viscosity solutions: expanded-bed ion exchange chromatography. The BSA was admixed into the CEW and the solution was pumped through the column for purification. The media used in the column was Streamline DEAE which is an anion-exchanger. The yield obtained was 85% and the purity was 57%. A mathematical model to understand and predict the behavior of expanded bed chromatography was developed to provide an estimation of the breakthrough curves obtained for BSA. A small sized porous dense adsorbent was also synthesized to enhance the purification process. This zirconia-based adsorbent allows use of higher flow velocities that is a key factor when working with viscous fluids such as chicken egg white.
|
10 |
Behavioral Effects of Functionalized CdSe/ZnS Quantum Dots in Self-Organization and Protein FibrillationVannoy, Charles Harvey 11 June 2010 (has links)
Advances in recent nanoscience technologies have generated a new compilation of biocompatible, fluorescent nanoparticles derived from semiconductor quantum dots (QDs). QDs are extremely small in size and possess very large surface areas, which gives them unique physical properties and applications distinct from those of bulk systems. When exposed to biological fluid, these QDs may become coated with proteins and other biomolecules given their dynamic nature. These protein-QD systems may affect or enhance the changes in protein structure and stability, leading to the destruction of biological function. It is believed that these QDs can act as nucleation centers and subsequently promote protein fibril formation. Protein fibrillation is closely associated with many fatal human diseases, including neurodegenerative diseases and a variety of systemic amyloidoses. This topic of protein-QD interaction brings about many key issues and concerns, especially with respect to the potential risks to human health and the environment. Herein, the behavioral effects of dihydrolipoic acid (DHLA)-capped CdSe/ZnS (core/shell) QDs in hen egg-white lysozyme (HEWL) and human serum albumin (HSA) protein systems were systematically analyzed. This study gives rise to a better understanding of the potentially useful application of these protein-QD systems in nanobiotechnology and nanomedicine as a bioimaging tool and/or as a reference for controlled biological self-assembly processes.
|
Page generated in 0.055 seconds