Spelling suggestions: "subject:"resursreservation."" "subject:"itspreservation.""
1 |
The relationship of the Halphen reaction and pink discolorationMasson, James C., 1934- January 1957 (has links)
No description available.
|
2 |
Shell treatment for preservation of hen eggsGalbraith, Ernal Powell. January 1942 (has links)
LD2668 .T4 1942 G3 / Master of Science
|
3 |
Microbial penetration of eggsCrawford, Leslie Bryce. January 1950 (has links)
Call number: LD2668 .T4 1950 C73 / Master of Science
|
4 |
Cooling and Holding Eggs on the Ranch07 1900 (has links)
This item was digitized as part of the Million Books Project led by Carnegie Mellon University and supported by grants from the National Science Foundation (NSF). Cornell University coordinated the participation of land-grant and agricultural libraries in providing historical agricultural information for the digitization project; the University of Arizona Libraries, the College of Agriculture and Life Sciences, and the Office of Arid Lands Studies collaborated in the selection and provision of material for the digitization project.
|
5 |
Inactivation of Escherichia coli O157:H7 and Salmonella enteritidis in liquid egg products using pulsed electric fieldAmiali, Malek January 2005 (has links)
Pulsed Electric Field (PEF) processing, a novel, non-thermal food preservation method, has been shown to inactivate both spoilage and pathogenic microorganisms, while minimizing changes in the physical and organoleptic qualities of the food, such as those observed under conventional thermal processing. An understanding of the inactivation mechanisms and kinetics of microorganisms exposed to lethal or sub-lethal PEF treatments would allow industry and consumers to better understand and evaluate the potential of PEF technology as an alternative or complement to traditional methods of food preservation. This study consisted of three sets of experiments which sought to determine: (i) the electrical conductivity (EC) of various liquid food products (apple, orange and pineapple juices, egg white, whole egg and egg yolk) at different temperatures (5--55°C); (ii) the capacity of PEF (15 kV cm-1, 0°C) to inactivate Escherichia coli O157:H7 in dialyzed liquid egg products; and (iii) the effect of PEF (20 or 30 kV cm-1) in combination with temperature (10--40°C) on the inactivation of E. coli and Salmonella Enteritidis in liquid egg yolk (EY), whole egg (WE), or egg white (EW). The treatment chamber design was based in part on regression equations of EC vs. temperature developed in the first set of experiments. After only 0.1 sec of PEF (15 kV cm-1) treatment, l, 3 and 3.5 log reductions of E. coli were noted in dialyzed egg white, egg yolk and whole egg, respectively. Kinetic models of bacterial inactivation were proposed. A 210 mus exposure to PEF (30 kV cm-1 ) resulted in log reductions of 5.0 and 5.0 in egg yolk, 3.9 and 3.6 in WE and, 2.8 and 3.6 in egg white, for E. coli and S. Enteritidis, respectively. A maximum energy of 914 J was required to inactivate S. Enteritidis in WE. In egg white, cells injured by PEF represented 0.9 and 0.4 log for S. Enteritidis and E. coli, respectively. An exponential decay model and an Arrhenius equation were
|
6 |
Inactivation of Escherichia coli O157:H7 and Salmonella enteritidis in liquid egg products using pulsed electric fieldAmiali, Malek January 2005 (has links)
No description available.
|
Page generated in 0.084 seconds