• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimal upper bounds of eigenvalue ratios for the p-Laplacian

Chen, Chao-Zhong 19 August 2008 (has links)
In this thesis, we study the optimal estimate of eigenvalue ratios £f_n/£f_m of the Sturm-Liouville equation with Dirichlet boundary conditions on (0, £k). In 2005, Horvath and Kiss [10] showed that £f_n/£f_m≤(n/m)^2 when the potential function q ≥ 0 and is a single-well function. Also this is an optimal upper estimate, for equality holds if and only if q = 0. Their result gives a positive answer to a problem posed by Ashbaugh and Benguria [2], who earlier showed that £f_n/£f_1≤n^2 when q ≥ 0. Here we first simplify the proof of Horvath and Kiss [10]. We use a modified Prufer substitutiony(x)=r(x)sin(£s£c(x)), y'(x)=r(x)£scos(£s£c(x)), where £s = ¡Ô£f. This modified phase seems to be more effective than the phases £p and £r that Horvath and Kiss [10] used. Furthermore our approach can be generalized to study the one-dimensional p-Laplacian eigenvalue problem. We show that for the Dirichlet problem of the equation -[(y')^(p-1)]'=(p-1)(£f-q)y^(p-1), where p > 1 and f^(p-1)=|f|^(p-1)sgn f =|f|^(p-2)f. The eigenvalue ratios satisfies £f_n/£f_m≤(n/m)^p, assuming that q(x) ≥ 0 and q is a single-well function on the domain (0, £k_p). Again this is an optimal upper estimate.

Page generated in 0.0884 seconds