• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Non-Reimannian gravitation and its relation with Levi-Civita theories

Scipioni, Roberto January 1998 (has links)
No description available.
2

Modelové problémy teorie gravitace / Model Problems of the Theory of Gravitation

Pilc, Marián January 2013 (has links)
Title: Model Problems of the Theory of Gravitation Author: Marián Pilc Department: Institute of Theoretical Physics Faculty of Mathematics and Physics Supervisor: prof. RNDr. Jiří Bičák, DrSc., dr. h. c., Institute of Theoretical Physics Faculty of Mathematics and Physics Abstract: Equations of motion for general gravitational connection and orthonormal coframe from the Einstein-Hilbert type action of the Einstein-Cartan theory are derived. Ad- ditional gauge freedom is geometrically interpreted. Our formulation does not fix coframe to be tangential to spatial section hence Lorentz group is still present as part of gauge freedom. 3+1 decomposition introduces tangent Minkowski structures hence Hamilton-Dirac approach to dynamics works with Lorentz connection over spatial sec- tion. The second class constraints are analyzed and Dirac bracket is defined.Reduction of phase space is performed and canonical coordinates are introduced. The second part of this thesis is dedicated to quantum formulation of Einstein-Cartan theory. Point version of Einstein-Cartan phase space is introduced. Basic variables, crucial for quan- tization, are derived via groups acting on the phase space and their selfadjoint represen- tation is found. Representation of basic variables of Einstein-Cartan theory is derived via infinite...
3

Transition de géométrie en gravité quantique à boucles covariante / Geometry transition in covariant loop quantum gravity

Christodoulou, Marios 23 October 2017 (has links)
Dans ce manuscrit, nous présentons un mise en place et calcul d'un observable physique dans le cadre de la Gravité Quantique à Boucles covariante, pour un processus physique mettant en jeu la gravité quantique de façon non-perturbatif. Nous considerons la transition d'une région de trou noir à une région de trou blanc, traitée comme une transition de géométrie assimilable à un effet de tunnel gravitationnel. L'observable physique est le temps caractéristique dans lequel ce processus se déroule.Nous commençons par une dérivation formelle de haut--en--bas, allant de l'action de Hilbert-Einstein au ansatz qui définit les amplitudes de l'approche covariante de la GQB. Nous prenons ensuite le chemin de bas--en--haut, aboutissant à l'image d'une intégrale de chemin du type somme-de-géométries qui émerge à la limite semi-classique, et discutons son lien étroite avec une intégrale de chemin basé sur l'action de Regge. En suite, nous expliquons comment construire des paquets d'ondes décrivant des géométries spatiales quantiques, plongées dans un espace-temps quantique de signature Lorentzienne.Nous montrons que lors de la mise en œuvre de ces outils, nous avons une estimation simple des amplitudes décrivant des transitions de géométrie de façon probabiliste. Nous construisons un mise en place basée sur l'espace-temps Haggard-Rovelli, où une approche d'intégrale de chemin peut être appliquée naturellement. Nous procédons à une dérivation d'une expression explicite, analytiquement bien--définie et finie, pour une amplitude de transition décrivant ce processus. Nous utilisons ensuite l'approximation semi-classique pour estimer le temps caractéristique du phénomène. / In this manuscript we present a calculation from covariant Loop Quantum Gravity, of a physical observable in a non-perturbative quantum gravitational physical process. The process regards the transition of a trapped region to an anti--trapped region and is treated as a quantum geometry transition akin to gravitational tunneling. The physical observable is the characteristic timescale in which the process takes place. We start with a top--to--bottom formal derivation of the ansatz defining the amplitudes for covariant LQG, starting from the Hilbert-Einstein action. We then take the bottom--to--top path, starting from the EPRL ansatz, to the sum--over--geometries path integral emerging in the semi-classical limit, and discuss its close relation to the naive path integral over the Regge action. We proceed to the construction of wave--packets describing quantum spacelike three-geometries that include a notion of embedding in a Lorentzian spacetime. We derive a simple estimation for the amplitudes describing geometry transition and show that a probabilistic description for such phenomena emerges, with the probability of the phenomena to take place being in general non-vanishing.The Haggard-Rovelli spacetime, modelling the spacetime surrounding the geometry transition region for a black to white hole process, is formulated. We then use the semi--classical approximation to give a general estimation of amplitudes describing the process. We conclude that the transition is predicted to be allowed by LQG, with a crossing time that is linear in the mass. The probability for the process to take place is suppressed but non-zero.

Page generated in 0.0461 seconds