Spelling suggestions: "subject:"eléments radioactive"" "subject:"eléments radioactivity""
1 |
Entrapment of mobile radioactive elements with coordination polymers and supported nanoparticles / Non traduitMassasso, Giovanni 13 October 2014 (has links)
La production d'énergie nucléaire nécessite des systèmes avancés pour améliorer les procédures de stockage et de confinement des déchets radioactifs. Par ailleurs, la capture d'éléments radioactifs mobiles dans les effluents des centrales nucléaires demande une amélioration de la capacité et de la sélectivité. L'iode 129-I est un des produits les plus critiques à confiner et il est produit pendant les procédés de recyclage des déchets nucléaires. Dans ce travail de thèse, la classe de matériaux moléculaires, dénommée structures de type Hofmann, a été étudiée en tant que matériaux massifs et nanoparticules supportées pour la capture sélective de l'iode moléculaire. En premier lieu, les matériaux M'(L)[M''(CN)4] ont été précipités sous la forme de poudres microcristallines. L'insertion d'iode dans le réseau des matériaux massifs a été effectuée par différents protocoles: 1) adsorption d'iode dans des solutions de cyclohexane à température ambiante; 2) adsorption d'iode en phase gazeuse à 80 °C; 3) adsorption de vapeurs d'iode en phase gazeuse à 80 °C et en présence de vapeurs d'eau. Les différents protocoles pour l'insertion d'iode n'ont pas influencé la nature de l'iode confiné. Pour la capture en solution, les structures NiII(pz)[NiII(CN)4], NiII(pz)[PdII(CN)4] et CoII(pz)[NiII(CN)4] ont montré une capacité d'une molécule d'iode par unité de maille. L'iode confiné est physisorbé en tant qu'iode moléculaire en interaction avec le réseau. Les modélisations GCMC ont confirmé la capacité maximale et ils ont indiqué que l'iode interagit avec la pyrazine et avec les cyanures. Sur la base des données expérimentales, la modulation des métaux dans le réseau a montré une légère différence dans la force d'interaction entre l'iode et le réseau et une adaptation de la maille spécifique pour chaque composition. Une complète régénération du réseau a été possible, puisque l'iode était complètement désorbé avant la décomposition du réseau. Pour le réseau NiII(pz)[PtII(CN)4], on a observé un mécanisme différent de capture puisque ce réseau contenant Pt a réagi avec l'iode en donnant le complexe de coordination NiII(pz)[PtII/IV(CN)4].I-. La formation de ce type de complexe était déjà observée dans la littérature par Ohtani et al. lesquels avaient préparé le complexe via une synthèse in-situ. Ensuite, le changement du ligand organique pyrazine avec d'autres ligands plus longs, c'est-à-dire la 4,4'-bipyridine (bpy) ou 4,4'-azopyridine (azpy), pour avoir des cages plus grandes a montré une diminution de la capacité maximale de capture d'iode. Les données expérimentales ont suggéré que pour un confinement d'iode optimisé, le réseau doit disposer de cages avec une dimension très proche de la molécule d'iode (0.5 nm). Après l'étude des matériaux massifs, nous avons considéré la préparation de nanoparticules supportées de NiII(pz)[NiII(CN)4] pour la capture d'iode. Nous avons obtenu les nanoparticules via un procédé étape par étape, par imprégnation d'une série de silices mésoporeuses greffées avec un ligand diamine, puis avec les précurseurs de NiII(pz)[NiII(CN)4]. Nous avons utilisé en tant que supports, une silice SBA-15 modifiée et des billes de verre poreux pour obtenir respectivement les nanocomposites Sil@NP and Glass@NP. Par microscopie électronique à transmission, nous avons détecté pour Sil@NP des nanoparticules de diamètre moyen 2.8 nm. L'adsorption d'iode dans les nanoparticules a été confirmée par spectroscopie FT-IR. Les traitements thermiques ont indiqué que la portion d'iode dans les nanoparticules pouvait être désorbé dans l'intervalle 150-250 °C. Nous avons pu estimer que la capacité de capture des nanoparticles était très proche de la capacité du massif NiII(pz)[NiII(CN)4]@I2. / Nuclear power industry still demands further research to improve the methods for the storage and the confinement of the hazardous radioactive wastes coming from the fission of radionuclide 235U. The volatile radioactive 129I (half-life time 15x107 years) is one of the most critical products coming from the reprocessing plants in the fuel-closed cycles. In the present thesis the family of coordination solid networks, known as Hofmann-type structures, was studied in the form as both bulk and supported nanoparticles for the selective entrapment of the molecular iodine. This set of investigated materials exhibited a general formula M'(L)[M''(CN)4] where M' = NiII or CoII; L = pyrazine, 4,4'-bipyridine, 4,4'-azopyridine; M'' = NiII, PdII or PtII. Initially, the material NiII(pz)[NiII(CN)4] and its analogue structures were precipitated as microcrystalline bulky compounds and fully characterized. The insertion of the iodine in the bulky host structures was performed with different methods: 1) adsorption of iodine in solutions of cyclohexane at room temperature; 2) adsorption of iodine vapours at 80 °C; 3) adsorption of iodine vapours at 80 °C in presence of water steam (for few selected materials). The different methods did not affect the nature of the confined iodine. For the entrapment in solution, results indicated that the Hofmann-type structures NiII(pz)[NiII(CN)4], NiII(pz)[PdII(CN)4] and CoII(pz)[NiII(CN)4] could host one I2 molecule per unit cell. The iodine resulted physisorbed as molecular iodine in interaction with the host structure. GCMC simulations confirmed the maximal capacities and indicated that iodine could interact with both the pyrazine and the coordinated cyanides. Experimentally, however, the modulation of the metals showed a slightly different strength of interaction I2-lattice bringing to a different lattice adaptation. The materials also could be fully regenerated since the complete desorption of iodine occurred before the decomposition of the host structure. Reiterated adsorption-desorption steps (3 cycles) on the networks NiII(pz)[NiII(CN)4] and NiII(pz)[PdII(CN)4] indicated an excellent structural resistance to cycling and a maintained high capacity. A different mechanism of confinement was detected for the structure NiII(pz)[PtII(CN)4] which reacted with iodine giving complex NiII(pz)[PtII/IV(CN)4].I-. Finally, the modulation of the organic ligand L indicated that the replacement of the ligand pyrazine with longer ligands, to obtain larger pores, had a detrimental effect on the maximal iodine loading due to a weaker confinement. After the study of the bulk materials, we considered the preparation of supported nanoparticles of NiII(pz)[NiII(CN)4] for the entrapment of iodine. The nanoparticles were obtained by a step-by-step method, impregnating a set of diammine-grafted mesoporous silicas with the precursors of NiII(pz)[NiII(CN)4]. We detected nanoparticles with mean size 2.8 nm by transmission electronic microscopy. The insertion of iodine in the nanoparticles was confirmed by FT-IR. Thermal treatments indicated that the portion of iodine inside the nanoparticles could be reversibly desorbed in the range 150-250 °C and reintroduced in a cyclic process. It was estimated that the amount of physisorbed iodine in the NPs, with respect to the amount of deposited NPs matched with the maximal capacity NiII(pz)[NiII(CN)4]@I2.
|
Page generated in 0.0598 seconds