• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sodium Ascorabe as a Potent Stimulator of Elastic Fiber Production

Hyunjun, Kim 30 November 2011 (has links)
The complicated problem of efficient stimulation of elastic fiber production in already developed human tissues has not yet been solved. The present study introduces sodium ascorbate (SA) as a stimulator of elastogenesis in cultures of different cell types including fibroblasts isolated from patients with elastopathy genetic diseases. We then elucidated mechanisms of elastogenic action of SA. SA exercises its net elastogenic effect only after being actively transported into the cell interior through two separate mechanisms. These are the “fast effect,” which reflects the greater stability of intracellular tropoelastin, and the “late effect,” which reflects the true enhancement of the elastin gene expression occurring after SA-induced activation of c-src tyrosine kinase and the consecutive phosphorylation of IGF-1 receptor, which triggers the downstream signals leading to activation of the elastin gene expression. In conclusion, for the first time we have established that SA is a potent stimulator of elastic fiber production.
2

Sodium Ascorabe as a Potent Stimulator of Elastic Fiber Production

Hyunjun, Kim 30 November 2011 (has links)
The complicated problem of efficient stimulation of elastic fiber production in already developed human tissues has not yet been solved. The present study introduces sodium ascorbate (SA) as a stimulator of elastogenesis in cultures of different cell types including fibroblasts isolated from patients with elastopathy genetic diseases. We then elucidated mechanisms of elastogenic action of SA. SA exercises its net elastogenic effect only after being actively transported into the cell interior through two separate mechanisms. These are the “fast effect,” which reflects the greater stability of intracellular tropoelastin, and the “late effect,” which reflects the true enhancement of the elastin gene expression occurring after SA-induced activation of c-src tyrosine kinase and the consecutive phosphorylation of IGF-1 receptor, which triggers the downstream signals leading to activation of the elastin gene expression. In conclusion, for the first time we have established that SA is a potent stimulator of elastic fiber production.

Page generated in 0.0826 seconds