• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Analysis of Machining System Capability and Its Link with Machined Component Quality

Österlind, Tomas January 2013 (has links)
Machining components out of tolerances is of no use in competitiveproduction. The machining system sets the limitations of dimensionalaccuracy and surface quality of a machined component. The capabilityof the machining system describes these limits in terms of specifiedvalues. This thesis deals with machining system capability analysismainly focused on machine tool static and dynamic stiffness.The influence of stiffness and flexibility on machining systemcapability is analytically and experimentally investigated. Theexperimental work presented in the thesis complies with the theoriesand shows the relation between machine tool capability and theoutcome on the machine component.The concept of capability analysis by elastic linked system andthe currently available tools for such an evaluation is presented anddiscussed. The basis of elastic linked system analysis is the use ofmeasurements under loaded condition. The machine tool is loadedwith a known force creating a test condition closer to real machining,compared to current methods of unloaded machine tools. Twomeasurement tools for elastic linked system capability analysis areexplained in the thesis: Loaded Double Ball Bar and ContactlessExcitation and Response System.The thesis consists of an analytical base and an experimental casestudy on spiral bevel gear face milling. The experiments are discussedand compiled with the given theories. / <p>QC 20130513</p>
2

A Computational Framework for Control of Machining System Capability : From Formulation to Implementation

Archenti, Andreas January 2011 (has links)
Comprehensive knowledge and information about the static and dynamic behaviour of machine tools, cutting processes and their interaction is essential for machining system design, simulation, control and robust operation in safe conditions. The very complex system of a machine tool, fixture and cutting tools during the machining of a part is almost impossible to model analytically with sufficient accuracy. In combination with increasing demands for precision and efficiency in machining call for new control strategies for machining systems. These strategies need to be based on the identification of the static and dynamic stability under both the operational and off-operational conditions. To achieve this it is necessary to monitor and analyze the real system at the factory floor in full production. Design information and operational data can then be linked together to make a realistic digital model of a given machining system. Information from such a model can then be used as input in machining simulation software to find the root causes of instability. The work presented in this thesis deals with the static and dynamic capability of machining systems. The main focus is on the operational stability of the machining system and structural behaviour of only the machine tool, as well. When the accuracy of a machining system is measured by traditional techniques, effects from neither the static stiffness nor the cutting process are taken into account. This limits the applicability of these techniques for realistic evaluation of a machining system’s accuracy. The research presented in this thesis takes a different approach by introducing the concept of operational dynamic parameters. The concept of operational dynamic parameters entails an interaction between the structural elements of the machining systems and the process parameters. According to this concept, the absolute criterion of damping is used to evaluate the dynamic behaviour of a machining system. In contrast to the traditional theory, this methodology allows to determine the machining system's dynamic stability, in real time under operating conditions. This framework also includes an evaluation of the static deformations of a machine tool.  In this context, a novel concept of elastically linked system is introduced to account for the representation of the cutting force trough an elastic link that closes the force loop. In addition to the elastic link which behaves as a static element, a dynamic non-contact link has been introduced. The purpose is to study the non-linear effects introduced by variations of contact conditions in joints due to rotational speed. / QC 20111123

Page generated in 0.0637 seconds