Spelling suggestions: "subject:"alectric switches"" "subject:"alectric witches""
1 |
Measurement and interpretation of short arc A.C. interruption phenomenaSnowdon, A. C. January 1962 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1962. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 108-109).
|
2 |
Electrical Switching Investigations To Design Amorphous Semiconductors For Device ApplicationsPrakash, S 11 1900 (has links) (PDF)
No description available.
|
3 |
Towards Automated Design of Toggle Switch MechanismsKalyan Ramana, G January 2016 (has links) (PDF)
This work deals with addressing the issues related to design of double toggle switch mechanisms with emphasis on structural, dimensional and dynamic aspects. Currently, almost all the issues related to electrical switches are dealt from electromagnetic point of view; the operating mechanism is hardly touched. It is observed that kinematic parameters influence electrical performance of switch significantly. Therefore, there is a need to develop methodologies for supporting exploration of diverse kinematic chains (KCs) for this purpose. Visual inspection is tedious and error prone even when a complete list of design criteria is available, hence, the work presented in the thesis contributes towards automated design of toggle switch mechanisms.
In this context, in house modular kinematics data structure is found useful for using it as a tool in the design of toggle switch. Modular kinematics, typically used for kinematic analysis, works on the principle of finding the configuration of a mechanism using a given set of modules by a procedure called module sequence. This module sequence is used and interpreted in a number of ways for its effective use in various design stages. Structurally, a set of seven conditions must be satisfied by a KC to exhibit double toggle. These conditions are broadly classified into three categories: criteria for KC, function assignment criteria and criteria for stoppers. These three criteria are to be checked automatically by use of module sequence in the same order as mentioned.
In the criteria for KC, one of the conditions is that, the KC should not have fractionated degrees of freedom (d.o.f.). Hence, detection of fractionation in a KC is inevitable. In literature, is was found that the algorithms for detection operate at their worst case complexity, O(n4), and some of them do not report joint fractionation. Thus, the algorithms are not only robust but also computationally expensive. Therefore, a frugal and comprehensive method O(n2) is implemented to detect fractionation using modular kinematics. Also, inherent structural pattern embedded in fractionated KCs is hardly studied in literature. It is found that the way body and joint fractionation is defined in fractionated KCs is inconsistent. So, fractionation is interpreted as symbolic partitioning of joints and links in the traditional body and joint fractionation types respectively. Based on the number of ways of partitioning, simple and multiple types of fractionation are recognized. Valid partitions are identified using the notion of fractionating and non-fractionating subchains. Relative locations of these subchains influence distribution of d.o.f. across the fractionated KC. Conventional representation of KCs as links and joints or graphs is difficult to comprehend this distribution. For this, a novel concept of fractionation graph is introduced that gives d.o.f. distribution information and the relative locations of the constituent subchains across the KC. Modular kinematics gives a constructive description of fractionated KCs. Characterization of fractionated KCs, based on presence of multiple separation links, is introduced as order of fractionation. Uniqueness for a given order of fractionation is also justified.
After the criteria for KC, a KC is tested for feasibility for function assignment criteria. This requires recognition of active and passive subchains of the KC with respect to input and output pairs. For this, module sequence is characterized for recognition of the subchains. Based on these subchains, locations of stoppers are derived. Using this information, an algorithmic approach to assign functions (functions like spring, ground link, input link, etc.) to derive distinct driving mechanisms provided isomorphic elements (links and joints) of the KC are known beforehand, is introduced.
The design parameters influencing dimensional synthesis have been identified as dimensions of links, spring anchor points and stopper locations. Sub-problems associated with each parameter are analyzed. It is found out that optimum location of stoppers for selecting operational range of motion is necessary by taking into account the considerations of timing of switch and impact velocity. Based on the analysis, an algorithmic way to design single toggle switch mechanisms is introduced.
Timing for closing or opening of a switch is one of the critical measure that determines its performance. Timing should be as low as possible without exceeding the impact velocity at the instant contacts meet each other. Timing of a switch depends on the dimensions of the links, inertial parameters, spring stiffness etc. For a given timing for a mechanism, dynamic synthesis, in this thesis, deals with finding the inertial parameters of the links using Quinn's energy distribution method, modular kinematics, and Nelder and Mead's downhill simplex method for optimization. This thesis helps the designer to use modular kinematics as a potential automated tool to select a valid design to make the solution space more meaningful in the design of toggle switch mechanisms.
|
4 |
Systematic Synthesis And Analysis Of Multi-DOF Toggle Mechanisms For Electrical SwitchesDeb, Manan 01 1900 (has links) (PDF)
Electrical switches are ubiquitous. Performance requirement for a switch is stringent. The operating mechanism mostly decides the performance of an electromechanical switch. However, design of such mechanisms, which involve discontinuous motions, is not much addressed in literature. The present work proposes a systematic procedure to design and analyze toggle based switching mechanisms.
The work defined the toggle phenomenon rigorously, and, based on the behaviour of the toggles, provided a classification scheme for the switch mechanisms. The existing switches fall in two major categories viz., single-toggle and double-toggle switches. The double toggle mechanism is more suitable for high power breaking as it can isolate the system’s behaviour from the operator’s behaviour. The kinematic and geometric attributes of the operating mechanism which affect the toggle sequence and timings have been identified. A systematic simulation based study has been performed to identify the influence of different kinematic and dynamic parameters on the functionality of a double toggle switching mechanism. The influence of the variable moment of inertia and mechanism singularities arising out of introduction of the four bar sub chain on the performance of the system have been studied in detail. It is observed that the performance of the double toggle systems is less susceptible, though not immune to the user behaviour; in extreme scenarios the switching performance could become erratic. The use of an additional spring in an existing system enhanced the system performance; but, connecting the main spring with the coupler link altered the system performance more dramatically. Thus it established that the influence of the kinematic configuration on the performance of a switching mechanism is more pronounced than the dynamic characteristics of a comparable system.
For the ab initio design of double toggle switching mechanisms, necessary structural criteria for a mechanism to exhibit double toggle phenomenon have been identified and verified with various 2 d.o.f. systems. It is also established that any double toggle mechanism cannot be used directly as a switching mechanism; the link dimensions, link arrangements and the stopper locations have to be chosen properly. Towards that end, three necessary kinematic criteria for a switching mechanism are identified. A few mechanisms which satisfy all structural and kinematic criteria are identified; the switching and toggle behaviour of these mechanisms are examined through simulations using Pro/Mechanism. Finally, considering all the conditions a
is constructed with consideration of mass and geometric shape of the links. Thus, it established that the proposed methodology can systematically generate novel, structurally distinct electrical switches.
|
Page generated in 0.0546 seconds