• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 14
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 45
  • 45
  • 45
  • 20
  • 16
  • 14
  • 14
  • 14
  • 12
  • 11
  • 11
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Single-switch three-phase zero-current-transition rectifier with power factor correction /

Gatarić, Slobodan, January 1994 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1994. / Vita. Abstract. Includes bibliographical references (leaves 73-74). Also available via the Internet.
12

Hybrid electric vehicle active rectifier performance analysis /

Amon, Ean A. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2007. / Printout. Includes bibliographical references (leaves 97-99). Also available on the World Wide Web.
13

Novel organic materials for molecular electronics and photonics /

NG, Man Kit. January 2002 (has links)
Thesis (Ph. D.)--University of Chicago, Department of Chemistry, 2002. / Includes bibliographical references. Also available on the Internet.
14

A novel integrated synchronous rectifier for LLC resonant converter

Ho, Kwun-yuan, Godwin., 賀觀元. January 2012 (has links)
There is ever-increasing demand in telecommunication system, data server and computer equipment for low voltage, high current power supply. LLC resonant converter is a good topology on primary side of the converter because it has soft switching and resonant conversion. However, the passive rectifier in the secondary side has high power dissipation. Synchronous rectifier is a popular method to reduce this rectification loss. Although there are many types of synchronous rectifier for PWM converter, most of them do not function well in LLC resonant converters. It is because the wave form of LLC resonant converter is different from PWM. The objective of this research is to reduce the power dissipation and physical size at the same time. In this thesis, a novel current driven synchronous rectifier with saturable current transformer and dynamic gate voltage control for LLC resonant Converter is presented. This novel circuit reduces the rectification loss and size of the current transformer in the synchronous rectifier. This synchronous rectifier has several outstanding characteristics compared with generic voltage driven and current driven synchronous rectifier. The saturable feature reduces the current transformer turns. Inherent dynamic gate voltage controlled by saturable current transformer reduces gate loss in the MOSFET. A novel driving circuit is proposed for accurate turn off time. It reduces loss significantly. This synchronous rectifier is completely self-contained which can replace the rectifier diode as a drop in replacement. It is insensitive to parasitic inductance. In order to explain the current transformer saturable, a model of saturable current transformer is proposed. A prototype demonstrates the advantages of the proposed current driven synchronous rectifier. Furthermore, a novel integrated synchronous rectifier is presented which provides a more compact system. The synchronous rectifier current transformer is integrated with the main transformer which reduces the number of circuit joints in power path. Each soldering joint generates significance loss in power converter. A pair of 0.5mΩ soldering joint in 25A current path produces 0.62W loss. The placement of the integrated current transformer is important. A criterion for the placement of the current transformer within the main transformer is to avoid interference to the current transformer from the magnetic flux of the main transformer. Thus, a placement method to integrate the current transformer into the main transformer is proposed. An integrated current transformer model is suggested to explain the operation of the integrated synchronous rectifier. A prototype demonstrates the advantages of the integrated synchronous rectifier. / published_or_final_version / Electrical and Electronic Engineering / Master / Master of Philosophy
15

Simulation of current mode control schemes for power factor correction circuits /

Pal, Subarna, January 1998 (has links)
Thesis (M. Eng.), Memorial University of Newfoundland, 1998. / Bibliography: leaves 140-143.
16

An analog computer study of a static AC drive system

Woloszyk, Leonard Thomas, January 1967 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1967. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
17

Comparison of controlled rectifier and chopper power supplies for DC smelting furnace applications /

Sparkes, Jason Karl, January 2004 (has links)
Thesis (M.Eng.)--Memorial University of Newfoundland, 2004. / Bibliography: leaves 163-174.
18

Design, fabrication and characterization of III-nitride PN junction devices

Limb, Jae Boum. January 2007 (has links)
Thesis (Ph. D.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2008. / William Doolittle, Committee Member ; Joy Laskar, Committee Member ; Russell Dupuis, Committee Chair ; David Citrin, Committee Member ; Srinivas Garimella, Committee Member.
19

Evaluation of dynamic and static electrical characteristics for the DY8 and YI8 process gallium diodes in comparison to the DI8 process boron diodes.

Dhoopati, Swathi 12 1900 (has links)
A rectifier is an electrical device, comprising one or more semiconductor devices arranged for converting alternating current to direct current by blocking the negative or positive portion of the waveform. The purpose of this study would be to evaluate dynamic and static electrical characteristics of rectifier chips fabricated with (a) DY8 process and (b) YI8 process and compare them with the existing DI8 process rectifiers. These new rectifiers were tested to compare their performance to meet or exceed requirements of lower forward voltages, leakage currents, reverse recovery time, and greater sustainability at higher temperatures compared to diodes manufactured using boron as base (DI8 process diodes) for similar input variables.
20

Single-switch three-phase zero-current-transition rectifier with power factor correction

Gatarić, Slobodan 16 December 2009 (has links)
A novel, zero-current-transition (ZCT) topology of the single-switch three-phase boost PFC rectifier is proposed. The soft transition is achieved with a low-power auxiliary circuit employing an additional switch. The circuit can be used with an IGBT at switching frequencies up to 50. Its operation is analyzed in detail, and design guidelines are provided. The small signal model of the circuit is developed, and voltage mode control is designed. The results are verified on a 4 kW, 50 kHz, experimental ZCT rectifier with an IGBT; total harmonic distortion below 9% and efficiency above 95% were obtained. / Master of Science

Page generated in 0.1115 seconds