Spelling suggestions: "subject:"alectric filters, bandpass"" "subject:"alectric filters, pandpass""
1 |
Synthesis of active RC bandpass filters using frequency-independent transformation /Ho, Kwok-choi. January 1900 (has links)
Thesis--M. Phil., University of Hong Kong, 1980.
|
2 |
Bandpass filters for unconstrained target recognition and their implementation in coherent optical correlatorsYoung, Rupert Charles David. January 1994 (has links)
Thesis (Ph.D.) - University of Glasgow, 1994. / Ph.D. thesis submitted to the Faculty of Engineering, University of Glasgow, 1994. Includes bibliographical references. Print version also available.
|
3 |
Design and evaluation of a gm-RC bandpass filter using a 42 GHz linear OTA incorporating heterojunction bipolar transistorsSun, Shao-Chi. January 1994 (has links)
Thesis (M.S.)--Ohio University, November, 1994. / Title from PDF t.p.
|
4 |
Compact, reconfigurable and dual-band microwave circuits /Zhang, Hualiang. January 2007 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2007. / Includes bibliographical references (leaves 152-167). Also available in electronic version.
|
5 |
Synthesis of active RC bandpass filters using frequency-independent transformation何國才, Ho, Kwok-choi. January 1980 (has links)
published_or_final_version / Electrical Engineering / Master / Master of Philosophy
|
6 |
Synthesis of bandpass filters with jw axis zeros using grounded gyratorsGebauer, David Carl January 1978 (has links)
No description available.
|
7 |
Design of bandpass filter based on cross-shaped slotline resonatorsNi, Meng Yang January 2017 (has links)
University of Macau / Faculty of Science and Technology / Department of Electrical and Computer Engineering
|
8 |
Design and implementation of LTCC filters with enhanced stop-band characteristics.January 2001 (has links)
Leung Wing-Yan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 131-135). / Abstracts in English and Chinese. / Chapter Chapter 1 --- Introduction --- p.1 / Chapter Chapter 2 --- Background Theory --- p.3 / Chapter 2.1 --- Low-Pass Network Synthesis --- p.3 / Chapter 2.2 --- Maximally Flat Attenuation Characteristic --- p.5 / Chapter 2.3 --- Chebysheff Attenuation Characteristic --- p.6 / Chapter 2.4 --- Low-Pass to Band-Pass Transformation --- p.8 / Chapter 2.5 --- Impedance- and Admittance- Inverters --- p.9 / Chapter 2.6 --- Coupled-Resonator Filters --- p.13 / Chapter Chapter 3 --- New Circuit Topologies for Band-Pass Filters --- p.18 / Chapter 3.1 --- Locations of Transmission Zeros --- p.18 / Chapter 3.2 --- Circuit Topologies for Generation of Transmission Zeros --- p.18 / Chapter 3.3 --- Zeros at Lower Stop-Band (Category 1) --- p.21 / Chapter 3.3.1 --- Capacitor Insertions --- p.21 / Chapter 3.3.2 --- Design Equations for Configuration I --- p.22 / Chapter 3.3.3 --- Design Equations for Configuration II --- p.24 / Chapter 3.3.4 --- Coupling between Components --- p.28 / Chapter 3.3.5 --- Design Equations for Configuration III --- p.28 / Chapter 3.4 --- Zeros at Upper Stop-Band (Category 2) --- p.32 / Chapter 3.4.1 --- Inductor Insertions --- p.32 / Chapter 3.4.2 --- Design Equations for Configuration IV --- p.33 / Chapter 3.4.3 --- Design Equations for Configuration V --- p.35 / Chapter 3.4.4 --- Coupling between Components --- p.38 / Chapter 3.4.5 --- Design Equations for Configuration VI --- p.39 / Chapter 3.4.6 --- Design Equations for Configuration VII --- p.43 / Chapter 3.5 --- Zeros at Both Lower and Upper Stop-band (Category 3) --- p.46 / Chapter 3.5.1 --- Component Insertions --- p.46 / Chapter 3.5.2 --- Design Equations for Configuration VIII --- p.49 / Chapter 3.5.3 --- Design Equations for Configuration IX-XI --- p.49 / Chapter 3.5.4 --- Coupling between components --- p.50 / Chapter 3.5.5 --- Design Equations for Configuration XII --- p.51 / Chapter Chapter 4 --- Design Considerations --- p.52 / Chapter 4.1 --- Analytical Limitation --- p.53 / Chapter 4.1.1 --- "Conventional Band-Pass Filter, Configuration II, III, V and VI" --- p.53 / Chapter 4.1.2 --- Configuration I --- p.55 / Chapter 4.1.3 --- Configuration II --- p.57 / Chapter 4.1.4 --- Configuration IV --- p.59 / Chapter 4.1.5 --- Configuration VII-XII --- p.61 / Chapter 4.1.6 --- Summary --- p.61 / Chapter 4.2 --- Practical Limitation --- p.62 / Chapter 4.2.1 --- Configuration I --- p.64 / Chapter 4.2.2 --- Configuration II --- p.65 / Chapter 4.2.3 --- Configuration III --- p.67 / Chapter 4.2.4 --- Configuration IV --- p.69 / Chapter 4.2.5 --- Configuration V --- p.71 / Chapter 4.2.6 --- Configuration VI --- p.73 / Chapter 4.2.7 --- Summary --- p.75 / Chapter 4.3 --- Comparisons between Different Configurations --- p.76 / Chapter 4.3.1 --- Category 1 (Transmission Zeros at Lower Stop-Band) --- p.76 / Chapter 4.3.2 --- Category 2 (Transmission Zeros at Upper Stop-Band) --- p.79 / Chapter 4.3.3 --- Category 3 (Transmission Zeros at both side of the Stop-Band) --- p.82 / Chapter Chapter 5 --- LTCC Technology --- p.84 / Chapter 5.1 --- Definition --- p.84 / Chapter 5.2 --- Fabrication Process --- p.85 / Chapter 5.3 --- Material Used --- p.86 / Chapter 5.3.1 --- Conductive Materials --- p.86 / Chapter 5.3.2 --- Ceramic Materials --- p.87 / Chapter 5.4 --- Advantages of LTCC Technology --- p.87 / Chapter 5.5 --- Recent Development in LTCC Technology --- p.89 / Chapter 5.6 --- Design Rules --- p.90 / Chapter 5.7 --- Realization of Passive Elements in LTCC --- p.91 / Chapter 5.7.1 --- Capacitors --- p.91 / Chapter 5.7.2 --- Inductors --- p.96 / Chapter 5.7.3 --- Effect of Ground Plane on Inductance Realization --- p.99 / Chapter Chapter 6 --- Implementation and Characterization of LTCC Band-Pass Filter --- p.101 / Chapter 6.1 --- Design Procedures --- p.101 / Chapter 6.2 --- Schematic Design of LTCC Filters --- p.103 / Chapter 6.2.1 --- Category1 --- p.103 / Chapter 6.2.2 --- Category2 --- p.104 / Chapter 6.2.3 --- Category3 --- p.105 / Chapter 6.3 --- Design and Optimization --- p.106 / Chapter 6.4 --- Performance Evaluation --- p.117 / Chapter 6.4.1 --- TRL Calibration Method --- p.119 / Chapter 6.4.2 --- Experimental Results --- p.126 / Chapter Chapter 7 --- Conclusion and Recommendations for Future Work --- p.129 / References --- p.131 / Author´ةs Publication --- p.135 / Appendix A CAD Tool for LTCC Circuit Prototyping --- p.136 / Appendix B Computer Program 1 Listing --- p.153 / Appendix C Computer Program 2 Listing --- p.170 / Appendix D Computer Program 3 Listing --- p.172
|
9 |
Novel RF resonators and bandpass filters for wireless communications : theory, design and application /Zhang, Xiuyin. January 2009 (has links) (PDF)
Thesis (Ph.D.)--City University of Hong Kong, 2009. / "Submitted to the Department of Electronic Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy." Includes bibliographical references (leaves 141-158)
|
10 |
High-Q high-frequency CMOS bandpass filters for wireless applicationsLin, Fang 08 1900 (has links)
No description available.
|
Page generated in 0.0625 seconds