Spelling suggestions: "subject:"alectric instrumentation"" "subject:"delectric instrumentation""
1 |
Avaliação de desempenho de câmaras excitadas via linha de transmissão aplicáveis à compatibilidade eletromagnética. / Transmission line excited chamber performance evaluation applied to electromanetic compatibility.Santos Junior, Mario Alves dos 27 November 2009 (has links)
Este trabalho propõe uma configuração de câmaras excitadas por linhas de transmissão, considerada como potencial solução para as restrições das câmaras reverberantes atuais. Dentre estas restrições menciona-se, por exemplo, as relativas à operação das câmaras em baixas frequências, cujas dimensões poderão representar uma restrição física à sua implementação em ambientes de teste. Outras características físicas podem ser consideradas também restritivas, ao se considerar o volume útil de trabalho e o modo de excitação das câmaras canônicas. Visando satisfazer os índices de mérito aplicáveis, as diversas configurações propostas são avaliadas, onde, além dos arranjos das linhas de transmissão, também são considerados os detalhes relativos às variações da excitação e da carga via controle eletrônico. A metodologia de análise de desempenho da câmara proposta utiliza, basicamente, métodos analíticos, numéricos e avaliações experimentais. A aplicação de algoritmos e métodos de otimização recomendados pela literatura atual e alguns procedimentos desenvolvidos e adaptados pelos autores, foram utilizados na busca de configurações que melhor satisfaçam os índices de mérito adotados. Diversos resultados, obtidos através de simulações numéricas e de avaliações experimentais realizadas em um protótipo são apresentados e comparados, visando uma análise das potencialidades e da aplicabilidade deste tipo de câmara às necessidades dos ensaios de compatibilidade eletromagnética de equipamentos e sistemas elétricos e eletrônicos. / This Thesis presents the proposition of a Transmission Line Excited Chamber configuration. This configuration is considered to be a potential solution for the constraints of reverberation chambers of nowadays. Among this constraints, e.g. the ones related to chamber operation at some MHz, is a physical restriction to implement in tests environments. Moreover the work volume and the canonical chamber excitation ways are also considered restrictions. In order to satisfy the chamber evaluation indexes of merit applicability, several transmission line sets are evaluated, including the details concerned to electronic exciting variation and load variation. The chamber performance analysis methodology is proposed in this work is based on analytical and numerical methods, and also experimental evaluations. Not only optimization algorithms and methods recommended by literature were used in order to reach the adopted indexes of merit but also procedures developed and adapted by the authors. To analyze the chamber capacity to reach all the electromagnetic compatibility test requirements applied to equipments and electric and electronic systems, several tests, were performed over one Transmission Line Excited Chamber prototype. The results obtained by numerical simulations and experimental evaluations are presented and compared.
|
2 |
Avaliação de desempenho de câmaras excitadas via linha de transmissão aplicáveis à compatibilidade eletromagnética. / Transmission line excited chamber performance evaluation applied to electromanetic compatibility.Mario Alves dos Santos Junior 27 November 2009 (has links)
Este trabalho propõe uma configuração de câmaras excitadas por linhas de transmissão, considerada como potencial solução para as restrições das câmaras reverberantes atuais. Dentre estas restrições menciona-se, por exemplo, as relativas à operação das câmaras em baixas frequências, cujas dimensões poderão representar uma restrição física à sua implementação em ambientes de teste. Outras características físicas podem ser consideradas também restritivas, ao se considerar o volume útil de trabalho e o modo de excitação das câmaras canônicas. Visando satisfazer os índices de mérito aplicáveis, as diversas configurações propostas são avaliadas, onde, além dos arranjos das linhas de transmissão, também são considerados os detalhes relativos às variações da excitação e da carga via controle eletrônico. A metodologia de análise de desempenho da câmara proposta utiliza, basicamente, métodos analíticos, numéricos e avaliações experimentais. A aplicação de algoritmos e métodos de otimização recomendados pela literatura atual e alguns procedimentos desenvolvidos e adaptados pelos autores, foram utilizados na busca de configurações que melhor satisfaçam os índices de mérito adotados. Diversos resultados, obtidos através de simulações numéricas e de avaliações experimentais realizadas em um protótipo são apresentados e comparados, visando uma análise das potencialidades e da aplicabilidade deste tipo de câmara às necessidades dos ensaios de compatibilidade eletromagnética de equipamentos e sistemas elétricos e eletrônicos. / This Thesis presents the proposition of a Transmission Line Excited Chamber configuration. This configuration is considered to be a potential solution for the constraints of reverberation chambers of nowadays. Among this constraints, e.g. the ones related to chamber operation at some MHz, is a physical restriction to implement in tests environments. Moreover the work volume and the canonical chamber excitation ways are also considered restrictions. In order to satisfy the chamber evaluation indexes of merit applicability, several transmission line sets are evaluated, including the details concerned to electronic exciting variation and load variation. The chamber performance analysis methodology is proposed in this work is based on analytical and numerical methods, and also experimental evaluations. Not only optimization algorithms and methods recommended by literature were used in order to reach the adopted indexes of merit but also procedures developed and adapted by the authors. To analyze the chamber capacity to reach all the electromagnetic compatibility test requirements applied to equipments and electric and electronic systems, several tests, were performed over one Transmission Line Excited Chamber prototype. The results obtained by numerical simulations and experimental evaluations are presented and compared.
|
3 |
Obtenção em larga escala de transmissores de pressão piezoresistivos de alto desempenho. / Large scale production of industrial piezoresistive pressure transmitters of high performance.Mayor Herrera, César Augusto 18 November 2013 (has links)
É apresentado um sistema para redução do tempo de calibração e compensação de sensores piezoresistivos de pressão para aplicações de automação e controle com características de alto desempenho, com compensação de diversas fontes de erro, especialmente, compensação de não-linearidade e influência da temperatura na medição, baseado em uma concepção que privilegia a precisão e exatidão da medida, a qualidade e a confiabilidade. O sistema projetado permite a automação do processo de calibração e compensação térmica de transmissores de pressão por meio de um sistema de medição e programação múltiplo, que possibilita a aquisição dos sinais em um único computador para até 16 transmissores simultâneos, aperfeiçoando o tempo total do processo, permitindo efetuar essa operação para uma produção a nível industrial. O tempo total do processo de compensação e calibração de mais de um transmissor foi reduzido em aproximadamente 6 horas por cada transmissor adicional. No caso de 16 transmissores o sistema sem multiplexação demoraria 114 horas enquanto o sistema com multiplexação demora 24 horas para efetuar o processo completo, representando uma diminuição de 78,9% no tempo total do processo. Os transmissores calibrados e compensados usando o sistema de multiplexação apresentam TEB menor que 0,1% FS, mostrando que o sistema projetado permite que os transmissores de pressão produzidos cumpram com características de desempenho iguais às atingidas pelo sistema de compensação e calibração simples. / Is presented a system for time optimization of the calibration and compensation process of piezoresistive pressure sensors for automation and control applications with high performance characteristics, with compensation of several error sources, specially, compensation of temperature dependencies and nonlinearity, based in an approach that privileges accuracy and precision in the measurements, quality and reliability. The designed system enables the automation of the calibration process and temperature compensation of pressure transmitters through a measuring and multiple programming system that enables the acquisition of signals on a single computer for up to 16 simultaneous transmitters, improving the overall process time, allowing to perform this operation for a production of industrial level. The total process time of compensation and calibration of more than one transmitter has been reduced by about 6 hours for each additional transmitter. In the case of 16 transmitters, the system without multiplexing would take 114 hours while the system with multiplexing takes 24 hours to make the entire process, representing a decrease of 78.9% in the total process time. The transmitters calibrated and compensated using the multiplexing system have TEB less than 0.1% FS, showing that the designed system allows pressure transmitters produced comply with performance characteristics equal to those achieved by the original compensation and calibration system.
|
4 |
Obtenção em larga escala de transmissores de pressão piezoresistivos de alto desempenho. / Large scale production of industrial piezoresistive pressure transmitters of high performance.César Augusto Mayor Herrera 18 November 2013 (has links)
É apresentado um sistema para redução do tempo de calibração e compensação de sensores piezoresistivos de pressão para aplicações de automação e controle com características de alto desempenho, com compensação de diversas fontes de erro, especialmente, compensação de não-linearidade e influência da temperatura na medição, baseado em uma concepção que privilegia a precisão e exatidão da medida, a qualidade e a confiabilidade. O sistema projetado permite a automação do processo de calibração e compensação térmica de transmissores de pressão por meio de um sistema de medição e programação múltiplo, que possibilita a aquisição dos sinais em um único computador para até 16 transmissores simultâneos, aperfeiçoando o tempo total do processo, permitindo efetuar essa operação para uma produção a nível industrial. O tempo total do processo de compensação e calibração de mais de um transmissor foi reduzido em aproximadamente 6 horas por cada transmissor adicional. No caso de 16 transmissores o sistema sem multiplexação demoraria 114 horas enquanto o sistema com multiplexação demora 24 horas para efetuar o processo completo, representando uma diminuição de 78,9% no tempo total do processo. Os transmissores calibrados e compensados usando o sistema de multiplexação apresentam TEB menor que 0,1% FS, mostrando que o sistema projetado permite que os transmissores de pressão produzidos cumpram com características de desempenho iguais às atingidas pelo sistema de compensação e calibração simples. / Is presented a system for time optimization of the calibration and compensation process of piezoresistive pressure sensors for automation and control applications with high performance characteristics, with compensation of several error sources, specially, compensation of temperature dependencies and nonlinearity, based in an approach that privileges accuracy and precision in the measurements, quality and reliability. The designed system enables the automation of the calibration process and temperature compensation of pressure transmitters through a measuring and multiple programming system that enables the acquisition of signals on a single computer for up to 16 simultaneous transmitters, improving the overall process time, allowing to perform this operation for a production of industrial level. The total process time of compensation and calibration of more than one transmitter has been reduced by about 6 hours for each additional transmitter. In the case of 16 transmitters, the system without multiplexing would take 114 hours while the system with multiplexing takes 24 hours to make the entire process, representing a decrease of 78.9% in the total process time. The transmitters calibrated and compensated using the multiplexing system have TEB less than 0.1% FS, showing that the designed system allows pressure transmitters produced comply with performance characteristics equal to those achieved by the original compensation and calibration system.
|
5 |
Cooling Of Electronics With Phase Change Materials Under Constant Power And Cyclic Heat LoadsSaha, Sandip Kumar 02 1900 (has links)
The trend in the electronic and electrical equipment industry towards denser and more powerful product requires a higher level of performance from cooling devices. In this context, passive cooling techniques such as latent heat storage systems have attracted considerable attention in recent years. Phase change materials (PCMs) have turned out to be extremely advantageous in this regard as they absorb high amount of latent heat without much rise of temperature. But unfortunately, nearly all phase change materials (PCMs) with high latent heat storage capacity have unacceptably low thermal conductivity, which makes heating and cooling processes slow during melting and solidification of PCMs. Augmentation of heat transfer in a PCM is achieved by inserting a high thermal conductivity material, known as thermal conductivity enhancer (TCE), into the PCM. The conglomeration of PCM and TCE is known as a thermal storage unit (TSU).
In this thesis, detailed and systematic analyses are presented on the thermal performance of TSUs subjected to two types of thermal loading- (a) constant power loading in which a constant power level is supplied to the chip (heater) for a limited duration of time, and (b) cyclic loading. Eicosane is used as the PCM, while aluminium pin or plate fins are used as TCEs.
First, a 1-D analytical model is developed to obtain a closed-form temperature distribution for a simple PCM domain (without TCE) heated uniformly from the bottom. The entire heating process is divided into three stages, viz. (a) sensible heating period before melting, during which heat is stored in the solid PCM in the form of specific heat,
(b) melting period, during which a melt front progresses from the bottom to the top layer of the PCM and heat is stored in latent as well as in sensible forms, and (c) post melting period, during which energy is stored again in the form of sensible heat. For each stage, conduction energy equation is solved with a set of initial and boundary conditions. Subsequently, a resistance capacitance model of phase change process is developed for further analysis.
For transient performance under constant thermal loading, experimental investigations are carried out for TSUs with different percentages of TCE. A numerical model is developed to interpret the experimental results. The thermal performance of a TSU is found to depend on a number of geometrical parameters and boundary conditions. Hence, a systematic approach is desirable for finding the best TSU design for which the chip can be operated for a longer period of time before it reaches a critical temperature (defined as the temperature above which the chip starts malfunctioning). As a first step of the approach, it is required to identify the parameters which can affect the transient process. It is found that the convective heat transfer coefficient, ‘h’ and the exposed area for heat transfer have little effect on the chip temperature during the constant power operation. A randomized search technique, Genetic Algorithm (GA), is coupled with the CFD code to find an optimum combination of geometrical parameters of TSUs based on the design criteria. First, the optimization is carried out without considering melt convection within the PCM. It is found that the optimum half-fin width remains fixed for a given heat flux and temperature difference. Assuming a quasi steady process, the results of optimization are then explained by constructing and analyzing a resistance network model. The resistance network model is then extended to include the effect of melt convection, and it is shown that the optimum pitch changes with the strength of convection. Accordingly, numerical analysis is carried out by considering the effect of melt convection, and a correlation for optimum pitch is developed.
Having established the role of melt convection on the thermal performance of TSUs, rigorous computational and experimental studies are performed in order to develop correlations among different non-dimensional numbers, such as Nusselt number, Rayleigh number, Stefan number and Fourier number, based on a characteristic length scale for convection. The enclosures are classified into three types, depending on the aspect ratio of cavity, viz. shallow, rectangular and tall enclosures. For a shallow enclosure, the characteristic length is the height of cavity whereas for a tall enclosure, the characteristic length is the fin pitch. In case of rectangular enclosure, both pitch and height are the important characteristic lengths.
For cyclic operation, it is required that the fraction of the PCM melting during the heating cycle should completely solidify back during the cooling period, in order that that TSU can be operated for an unlimited number of cycles. If solidification is not complete during the cooling period, the TSU temperature will tend to rise with every cycle, thus making it un-operational after some cycles. It is found that the solidification process during the cooling period depends strongly on the heat transfer coefficient and the cooling surface area. However, heat transfer coefficient does not play any significant role during the heating period; hence a TSU optimized for transient operation may not be ideal for cyclic loading. Accordingly, studies are carried out to find the parameters which could influence the behaviour of PCM under cyclic loading. A number of parameters are identified in the process, viz. cycle period and heat transfer coefficient. It is found that the required heat transfer coefficient for infinite cyclic operation is very high and unrealistic with air cooling from the surface of the TSU. Otherwise, the required cooling period for complete re-solidification will be very high, which may not be suitable for most applications.
In an effort to bring down the cooling period to a duration that is comparable to the heating period, a new design is proposed where both ‘h’ and area exposed to heat transfer can be controlled. In this new design, the gaps between the fins in a plate-fin TSU are alternately filled with PCM, such that only one side of a fin is in contact with PCM and the other side is exposed to the coolant (air). In this arrangement, the same heat flow path through the fin which is used for heating the PCM (during the heating stage) can also be used for cooling and solidifying the PCM during the cooling part of the cycle. Natural or forced air cooling through the passages can be introduced to provide a wide range of heat transfer coefficient which can satisfy the cooling requirements. With this arrangement, the enhanced area provided for cooling keeps the ‘h’ requirement within a realistic limit. This cooling method developed is categorized as a combination of active and passive cooling techniques. Analytical and numerical investigations are carried out to evaluate the thermal performance of this modified PCM-based heat sink in comparison to the ones with conventional designs. It is found that, the performance of new PCM-based heat sink is superior to that of the conventional one. Experiments are performed on both the conventional and the new PCM-based heat sinks to validate the new findings.
|
Page generated in 0.1322 seconds