• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling and simulation of induction motors for variable speed drives, with special reference to deep bar and saturation effects.

Levy, Levy Warren January 1990 (has links)
A thesis submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the Degree of Doctor of Philosophy. / Variable speed motors are achieved by varying the voltage of a DC machine or by varying the frequency of an AC machine, the former method being the simpler of the two. DC motors have the major disadvantage of brushes and commutators which require regular downtime for maintenance, a fact already recognised by Tesla [1] in 1888. Thus the AC motor, in particular the induction motor, is of a more rugged design and does not suffer from the commutator problem of its DC counterpart. Recent advances in the technology of the power electronics used to supply a variable frequency to the motor has allowed the induction motor to be a viable alternative to the DC motor in variable speed applications. Problems have been encountered in industry when an inverter is injudiciously selected to be combined with a motor. Such problems were highlighted by difficulties being experienced with some 400 kW inverter drives. The inverters had been bought from one supplier and the motors from another. When this system was coupled together, there was excessive heating in the motors and the overall plant was only able to operate well below its capacity, incurring a substantial weekly loss of income. The motor and inverter were evidently incompatible, and since the inverter could not be modified, the motor was redesigned to make it less susceptible to the harmonics present in the inverter waveform, These problems have led to the development of a variable speed drive simulation package at the University for use by the local industry which can accurately model the complete system of inverter, motor and its associated load. It is envisaged that this package could be used to predict the performance of a drive system and highlight problems that may occur. To be able to do this, an accurate model of the motor is required. This investigation gives the development of an induction motor model which is suitable . for variable speed drive system simulations. The model accounts for the deep bar effect by using lumped parameter circuits and includes saturation of the leakage paths using only information which is typically available from motor design data. A complete analysis is given of the different lumped parameter models and their suitability for use in this application. The thesis also shows the utilisation of the deep bar model to simulate reswitching transients and double cage motors. The author hopes that the models used in the simulation package wallow industry to predict problems prior to their occurrence, alter the designs and thereby avoid costly remanufacture of the system. / Andrew Chakane 2018

Page generated in 0.4017 seconds