• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A robust multi-objective statistical improvement approach to electric power portfolio selection

Murphy, Jonathan Rodgers 13 November 2012 (has links)
Motivated by an electric power portfolio selection problem, a sampling method is developed for simulation-based robust design that builds on existing multi-objective statistical improvement methods. It uses a Bayesian surrogate model regressed on both design and noise variables, and makes use of methods for estimating epistemic model uncertainty in environmental uncertainty metrics. Regions of the design space are sequentially sampled in a manner that balances exploration of unknown designs and exploitation of designs thought to be Pareto optimal, while regions of the noise space are sampled to improve knowledge of the environmental uncertainty. A scalable test problem is used to compare the method with design of experiments (DoE) and crossed array methods, and the method is found to be more efficient for restrictive sample budgets. Experiments with the same test problem are used to study the sensitivity of the methods to numbers of design and noise variables. Lastly, the method is demonstrated on an electric power portfolio simulation code.

Page generated in 0.0759 seconds