Spelling suggestions: "subject:"electrical insulation"" "subject:"electrical lnsulation""
1 |
A study of the behaviour of a uniaxially orientated polyethylene tape/oil insulating system subjected to electrical and thermal stressesDanikas, Michalis G. January 1985 (has links)
No description available.
|
2 |
The measurement of space charge and its effect on the breakdown strength of solid polymeric insulationCartwright, Giles Adrian January 1994 (has links)
No description available.
|
3 |
Contamination and fine melt filtration of low density polyethylene power cable insulationCoppard, Robert William January 1989 (has links)
No description available.
|
4 |
Effects of high frequency arcing in SFâ†6 puffer interrupters from low inductive current switchingChaaraoui, Jamal Abdullatif January 1993 (has links)
No description available.
|
5 |
Electrical Insulation Characteristics of HTS Cables Under Quench-Induced Thermal Stress ConditionHayakawa, N., Ueyama, S., Kojima, H., Endo, F., Masuda, T., Hirose, M. January 2007 (has links)
No description available.
|
6 |
Recent Progress in Electrical Insulation Techniques for HTS Power ApparatusOkubo, Hitoshi, Hanai, Masahiro, Kojima, Hiroki, Hayakawa, Naoki 09 1900 (has links)
Superconductivity Centennial Conference 2011- EUCAS–ISEC–ICMC (18-23 Sep 2011, The Hague, The Netherlands)
|
7 |
Pre-breakdown and breakdown phenomena in air along insulating solids / Phénomènes de pré-claquage et claquage dans l'air le long d'isolants solidesTremas, Laure 04 December 2017 (has links)
Compréhension et maîtrise des phénomènes intervenant sous haute tension à l'interface entre un gaz et un isolant solide.Dans le cadre du remplacement du SF6 dans les appareils moyenne tension, une étude de l’isolation électrique mixte (gaz (air) / solide isolant) a été réalisée. L’objectif étant de déterminer l’influence de la nature du solide sur la tenue au claquage. Pour cela plusieurs matériaux ont été sélectionnés tel que l’époxy / silice (matériau de référence chez Schneider Electric), le PA6T/66.GF50 (nouveau matériau pour cette application) ainsi que plusieurs autre matériaux permettant une meilleure compréhension du phénomène (PTFE, PC, PP, …). Les caractérisations diélectriques ont permis de mesurer des déclins de potentiel, des courants volumiques ainsi que des permittivités en fonction de la nature des matériaux. A partir de ces données, des mesures de claquage ont été effectuées. Deux configurations de champ électrique ont été testées (parallèle et perpendiculaire au solide). La géométrie « pointe-plan » a été sélectionnée, permettant l’observation de décharges partielles avant le claquage et donc une étude de la propagation de la décharge et non de l’initiation de celle-ci. Ces mesures ont permis de déterminer l’influence du solide sur la tension de claquage, avec une influence indirecte de la nature du matériau et sa teneur en eau. Dans notre configuration, la présence d’un isolant solide dégrade la tenue diélectrique. La permittivité est le paramètre influençant la tension de claquage, avec une réduction de celle-ci en présence de matériaux à forte permittivité (comme l’alumine). Aucun lien n’a pu être mis en évidence entre les mesures de déclin de potentiel et les tensions de claquage. Pour caractériser le développement de la décharge électrique le long de l’isolant solide, des visualisations et des mesures de courant ont été réalisés. Les visualisations ont permis d’observer deux types de décharges menant avant le claquage. Dans un premier temps le développement d’une décharge en surface « streamer de surface », puis celui d’une décharge dans le gaz « streamer de volume ». Ces observations ont permis de conclure que le streamer menant au claquage se développe majoritairement dans l’air en configuration de champ parallèle. Les mesures de courant ont apporté des informations sur l’initiation de la décharge, en montrant une réduction de la tension et du temps d’initiation de la décharge en présence d’un solide. Des résultats semblables ont été obtenus pour une large gamme de matériaux. Cependant certains matériaux de faible permittivité (PP, PTFE) se distinguent avec des tensions et des temps d’initiation retardés et aléatoires, semblables à ceux obtenus dans l’air sans solide. Il a été montré que l’initiation et la propagation n’influencent pas la tension de claquage en géométrie pointe-plan. Celle-ci est déterminée par la transition au claquage.Mots-clés : appareillages moyenne tension, tension de claquage, caractérisation diélectriques, streamers, courant transitoires, visualisations. / Comprehension and control of phenomena occurring under high voltage at the interface between a gas and a solid insulator.In the context of SF6 replacement in medium-voltage apparatus, a study of mixed electrical insulation (gas (air) / insulating solid) was carried out. The aim is to determine the influence of the nature of the solid on breakdown voltage. For this purpose several materials have been selected such as epoxy / silica (reference material of Schneider Electric), PA6T / 66.GF50 (new material for this application) and several other materials allowing a better understanding of the phenomenon (PTFE, PC, PP, ...). The dielectric characterizations allowed us to measure potential decay, currents and permittivities according to the nature of the materials. From this data, breakdown measurements have been carried out. Two configurations of electric field were tested (parallel and perpendicular to the solid). The "point-to-plane" geometry was selected, allowing the observation of partial discharges before breakdown and therefore a study of the propagation of the discharge and not of the initiation. These measurements show the influence of the solid on the breakdown voltage, with an indirect influence of the nature of the material and its water content. In our configuration, the presence of a solid insulator lowers the dielectric strength. The relative permittivity is the main parameter influencing the breakdown voltage, with a reduction of it in the presence of materials with high permittivity (alumina). It was not possible to establish a link between surface potential decay measurements and breakdown voltages. In order to characterize the development of the electric discharge along the solid insulation, visualizations and transient current measurements were achieved. The visualizations allowed the observation two types of discharges before the breakdown. First, the development of a surface discharge "surface streamer", followed by a discharge in the gas "volume streamer". These observations lead us concluding that streamers leading to breakdown develop predominantly in air above the surface in the parallel field configuration. Current measurements provide information on the initiation of the discharge. There exists a reduction of voltage and initiation time of the discharge in the presence of a solid. Similar results have been obtained for a wide range of materials. However, several low permittivity materials (PTFE, PP) show a different behaviour, with higher and scattered time delay and initiation voltage, similar to those obtain in air without solid. It has been shown that initiation and propagation do not influence the breakdown voltage in poi nt-plane geometry. The transition to breakdown mainly determines the breakdown voltage.Key words: medium voltage apparatus, breakdown voltage, dielectric characterization, streamers, transient currents, visualizations.
|
8 |
Substitution of thermosets by thermoplastic resins in electrical insulation applicationsCorvo Alguacil, Marina January 2017 (has links)
No description available.
|
9 |
Design Of An Optimum Test Plan For Accelerated Life Testing Of Electrical Insulation Under Progressive StressRai, Sudhanshu 01 1900 (has links) (PDF)
No description available.
|
10 |
A Partial Discharge Measurement Technique for Applied Square Pulse Voltage with 50 NS Rise TimesTaylor, Clayborne Dudley 11 December 2009 (has links)
During the fabrication of solid electrical insulation, small cavities known as micro voids may form in the material. As electrical stress increases in this micro void, the breakdown probability also increases. This type of electrical breakdown is commonly known as partial discharge. Magnitudes of partial discharge currents are typically small but enough to cause degradation of the electrical insulation. To study degradation for fast-rise time voltage square pulse train, partial discharge measurement is needed. In current studies, partial discharge pulse widths have been measured in the range of nanoseconds. The best approach for measurement at ultra wide band frequencies is a bridge type measurement system, to reduce external noise and improve sensitivity to PD currents. The bridge configuration can be used with samples instead of one sample and one coupling capacitor. Identically created samples will have a close match for impedance and frequency response. This type of bridge also helps to reduce other sources of measured current such as the high displacement currents due to fast rise time square pulse voltage on the samples. Further improvement includes simultaneous measurements using a “linked” bridge configuration, where bridges share a common sample. A directly connected measurement current shunt should be used for high sensitivity with a uniform ultra wide band frequency response. Post-measurement digital signal processing (DSP) algorithms will perform the task of pulse discrimination and time delay from the pulse front. This research presents a method to improve the measurement of partial discharge when applied voltage is non-sinusoidal, with high frequency components. The improvements are apparent when square pulse voltage rise times are less than 50 ns. Ultra wide band measurements of physical samples will be performed for short time duration with a digital storage oscilloscope. A DSP algorithm is used to filter residual noise from the partial discharge current. The presented measurement technique for samples for this study is an original approach. Sample results demonstrate the effectiveness of the technique.
|
Page generated in 0.131 seconds