• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EXPLORING THE POTENTIAL CONTRIBUTIONS OF USING OLD WIND FARMS AREAS TO LIMIT THE ELECTRICAL GENERATION DEFICIT IN SE4 SWEDEN - A REPOWERING INVESTIGATION

Drgham, Mohamad Mubarak January 2023 (has links)
In the southern part of Sweden, specifically in price zone SE4, there is an increasing cost of electricity and a contemporary supply deficit. This research aims to elaborate on the deficit in electrical generation to consumption in SE4. The found values indicate a 42% unmet demand, equaling 5.152 TWh annually. However, long-term solutions on a European and Swedish regional level require years to be implemented, and the complications of permitting and public acceptance of new renewable projects pose a delaying factor. Henceforth, repowering aging wind farms, which are nearing the end of their operational lifetime, presents a viable solution. In this research, a case study for SE4 old wind sites has been identified and assessed, using three repowering scenarios: Scenario I - wind, Scenario II - wind & solar, and Scenario III - wind, solar & storage system. The scenarios have been simulated using the available renewable resources in the case study area and retrofitted within the exact required surface area that the current case study system occupies of 42.71 km2. The results have shown that all scenarios have great potential to limit the 42% deficit of supply in SE4 when implemented. The share of annual generation found for each scenario was 0.939 TWh, 3.08 TWh, and 3.962 TWh, respectively. These annual generations will contribute to 7.7%, 25.32%, and 32.5% of the annual electrical consumption found for SE4. The first scenario of only wind energy is the most economical and has the highest capacity to productiveness of area ratio, at a 22.27 GWh/km2/year for 68 MW installed capacity.

Page generated in 0.3278 seconds