• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Monitoring damage of concrete beams via self-sensing cement mortar coating with carbon nanotube-nano carbon black composite fillers

Qiu, L., Li, L., Ashour, Ashraf, Ding, S., Zhang, L., Han, B. 01 December 2023 (has links)
Yes / Self-sensing concrete used in coating form for structural health monitoring of concrete structures has the merits of cost-effectiveness, offering protective effect on structural components, enabling electrical measurements unaffected by steel reinforcement and is also convenient to maintain and replace. This paper investigates the feasibility of using self-sensing cement mortar coating containing carbon nanotube-nano carbon black (CNT-NCB) composite fillers (CNCFs) for damage monitoring of concrete beams. The self-sensing cement mortar coated to concrete beams demonstrated outstanding electrical conductivity (resistivity ranging from 18 to 85 Ω·cm). Under monotonic flexural loadings, self-sensing cement mortar coating with 1.8 vol.% CNCFs featured sensitive self-sensing performance in terms of capturing the initiation of vertical cracks at pure bending span of concrete beams, with fractional change in resistivity (FCR) reaching up to 60.6%. Moreover, FCR variations of self-sensing cement mortar coating exhibited good synchronization and stability with the variation of mid-span deflections of concrete beams during cyclic flexural loadings irrespective of the contents of CNCFs and cyclic amplitudes. Remarkably, it was found that FCR of cement mortar coating basically showed a progressive upward tendency, representing irreversible increase in the resistance during cyclic loading. The irreversible residual FCR indicated the crack occurrence and damage accumulation of concrete beams.

Page generated in 0.0857 seconds